

DS2100 Digital Controller

Installation & User's Manual

MOOG

C27750-001

D	Added motor thermal protection notes following	Apr 2012	IRL024545
	UL508C review. Updated boxcar drawing.		
С	Significant re-write prior to release	Nov 2007	IRL21767
В	Added getting started section	Jan 2005	
А	DS2100 Preliminary Installation & User's Manual	23-April-2004	
Revision	Description	Date	EO

DS2100 Installation & User's Manual

SECTION 1: DS2100 OVERVIEW

TABLE OF CONTENTS

SECTION 1: DS2100 OVERVIEW	1-1
1.1 INTRODUCTION	1-3
1.2 DS2100 MODELS	1-4
1.3 Environmental Specifications	1-7
1.4 Design Standards	1-8
1.5 POWER RATINGS SPECIFICATIONS	1-9
1.5.1 Optional Control Logic Backup Power	1-10
1.5.2 Power Amplifier	1-10
1.6 GENERAL FUNCTIONAL SPECIFICATIONS	1-12
1.6.1 Digital Inputs (J2A)	1-12
1.6.2 Digital Outputs (J2B)	1-12
1.6.3 Standard I/O	1-13
1.6.4 Variant Specific I/O	1-13

1.1 Introduction

This section gives an overview of the available DS2100 models, ratings and general specifications. Detailed outlines of installation and wiring, functionality, user interfaces and other technical data are given in subsequent sections.

CAUTION: Repairs or modifications to the product by anyone other than a Moog authorised repair facility may create unsafe operating conditions and will invalidate the product warranty.

1.2 DS2100 Models

DS2100 B	ase Model	А	mplifier Current Ratin	Peak (A) 11			
Code	Size	Continuous (Arms)	Maximum (Arms)	Peak (A)			
G361-xx03	μA	3	8	11			
G361-xx06	μA	6	16	22			
G361-xx08	A	8	16	22			
G361-xx14	В	14	29.7	42			
G361-xx20	С	20	31.8	45			
G361-xx25	С	25	49.5	70			
G361-xx30	С	30	63.6	90			
G361-xx50	D	50	99.3	140			
G361-xx60	D	60	127.6	180			
G361-xx1x	Е	100	212.7	300			

The DS2100 family is available in nine base models, which cover a range of output current ratings.

Table 1.1 DS2100 Family Models

The DS2100 family uses a 13 character coding system to identify the unique attributes of each model. The coding system is shown in Figure 1.1.

SECTION 1: DS2100 OVERVIEW

			G361	Χ	Χ	Χ	XX	Х-	XX	- XXX
Model Series Designator										
	Current Model Design Status									
		-								
	Letter									
	E (E model)	4								
	- (dash)	<i>_</i>								
	Fieldbus / comm	and reference								
	No	Ontion Description	Statue							
	0	Beserved	Status							
	1	CAN	Available							
	2	Reserved	, tranabio							
	3	Reserved	-							
	4	Reserved	-							
	Safety Interlock									
	No	Ontion								
	<u>NU.</u>	Option No Sofoty Into	rlook							
	1	Safety Interlook in	nock							
	Dowor Doting Co	Salety Interlock II	Istalleu.							
	Fower nating Se	CUON								
No.	Arms / Apk	Power Stage	Control Stage	T	Pac	king	y Kit			
03	3/11	C25699-003	C27740-001		C2	7745-	003			
06	6/22	C25699-006	C27740-001		C2	C27745-003				
08	8/22	CA18516-503-000R	C27741-001		C27745-008		008			
14	14/42	CA18517-508-000R	C27741-001	_	C2	7745-	014	41		
20	20/45	C25699-020	C27741-001	_	C2	C27745-020		-11		
25	25/70	025699-025	C27741-001	-	C27745-020		020	-11		
50	50/90	C25699-050	C27741-001			C27745-020		-11		
50 60	60/180	C25699-060	C27741-001		C2	7745-	050	-11		
10	100/200	C25699-010	C27741-001	_	C2	C27745-100		-11		
10	100/300	C25699-010	C27741-001	-	02	7745	100	-11		
10	100/300	025600.011	C27741-001		02	7745	100	-11		
4,5	100/300	C25609-011	C27741-001		02	7745	100	-11		
		02/741-001		02	.7745-	100	-1			
		e version								
	l ottor	1								
	Δ	-								
	Software Version									
	Soltware version	1								
Version		Description	P/N							
03		Standard CAN Software	C27735-001							
Beserved										
	Number Descrit		ption	٦						
	XXX	See form 757 for valid con	figurations (Default 000)	1						

Valid Controller Model Numbers: Reference Form 757

1)Users must be experienced/qualified in the use of this product range before building products from this drawing.

2)3Amp and 6Amp drive options are provided with a 120Ohm Internal Regen Resistor

3)External regen resistors are to be ordered and supplied separately.

4)These power stages contain a safety interlock.

5)These power stages contain an AC mains/ 24V PSU to directly feed fans, when high-voltage is present.

Figure 1.1 DS2100 Box Car

Moog also provides and recommends a variety of accessories for the DS2100. Examples include:

- EMC cable brackets for securing cable and grounding shields at the DS2100. (Supplied as standard with DS2100).
- Pre-configured motor cables.
- Fuses & circuit breakers for use with the DS2100 drives.
- Filters to achieve EMC compliance.
- Graphical User Interface (GUI) for drive configuration and diagnostics.

Please consult your local Moog sales office or authorised distributor for part number and availability of these or other products.

1.3 Environmental Specifications

DS2100 Electronics

Temperature for storage:	-25 °C to 55 °C (Class 1K4)
Temperature for transport:	-25 °C to 70 °C (Class 2K3)
Maximum surrounding air temperature:	0 °C to 40 °C
Relative Humidity:	5 % to 85 %, non-condensing, 1 g/m ³ to 25 g/m ³ ,
	in accordance with EN50178 class 3k3
Elevation:	1000m (3,300 feet)
	Derate output 2% per 300m (1000 feet) above 1000m (3300 feet)
Air Pressure:	86 kPa to 106 kPa
Type of protection:	Components must be installed into an enclosure.
	The enclosure must provide at least IP54 per standard
	EN60529 or equivalent.
Pollution Degree:	Drive is suitable for installation in a Pollution Degree 2
	environment.
Installed position:	Vertical only.
Overvoltage protection class:	Category 2 per standard VDE0110 / IEC664
Noise:	Overall noise depends on the user installation and cabinet.

1.4 Design Standards

The DS2100 is CE-Marked under the EU's Low Voltage Directive. It has been designed to allow easy compliance of customer's machines under the EU's EMC Directive (measures as directed in this manual have to be taken to ensure EMC compliance). It is designed to the UL508C standard. The μ A size DS2100 units are UL Recognised. The DS2100 A-D sizes are UL listed.

The DS2100 has been designed to the following specific standards:-

IP Code	EN 60529:1991
EMC	EN 61800-3:1996 , EN 61800-
	3/A11:2000
	(Second Environment)
UL	UL508C with reference to UL840

Table 1.2 DS2100 Design Standards

1.5 Power Ratings Specifications

Model : G361-x	3Amp	6Amp	8Amp	14Amp	20Amp	25Amp	30Amp	50Amp	60Amp	100Amp
A.C. Mains Input Range Minimum Maximum	65Vac (110Vac -40%) 506Vac (440Vac +10%)									
Frequency Range					50	- 60Hz				
Internal Regeneration Power Continuous Dissipation Peak Dissipation @ 230Vac	50W 1 3Kw	100W 1 3kW								
Peak Dissipation @ 400Vac	4.8kW	4.8kW	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
External Regeneration Power Continuous Dissipation Peak Dissipation @ 230Vac Peak Dissipation @ 400Vac	50W 1.3Kw 4.8kW	100W 1.3kW 4.8kW	200W 3.1kW 12.5kW	250W 4.85kW 19.4kW	370W 13.3kW 53.3kW	370W 13.3kW 53.3kW	370W 13.3kW 53.3kW	750W 16kW 64kW	750W 16kW 64kW	1kW 36kW 146kW
Softstart Peak Inrush Current/Phase	30Apk									
	D.C. Bus Overvoltage D.C. Bus Undervoltage Bridge Temperature Fault Amplifier Short Circuit Protection									
Power Supply Fault Detection	n 24V Logic Backup Monitoring									
Voltage Discharge after A.C Mains Removal	Bleed Resistors across high voltage section.									

Table 1.3 DS2100 Power Ratings

1.5.1 Optional Control Logic Backup Power

D.C. Bus Minimum Voltage (below which 24Vd.c. Control Logic Backup supply is needed)	170Vd.c. (Generated from rectified 120Va.c.)
24V Input	24Vd.c.± 10% 2.0A steady state

Table 1.4 DS2100 Control Logic Backup Power Ratings

An auxiliary 24V d.c. control logic backup supply is **MANDATORY** for the -x003 & -x006 variants of the DS2100 product family.

The 24V Backup supply input is intended for use in the secondary of a Class 2 supply. Alternatively, it should be additionally fitted with a Listed Current limiting type fuse, rated 3A on the supply input to the device.

1.5.2 <u>Power Amplifier</u>

All current ratings are specified in ampere r.m.s. unless otherwise stated.

Power Amplifier Ratings:	
G361-xx03	3A _{continuous} /11A _{peak}
G361-xx06	6A _{continuous} /22A _{peak}
G361-xx08	8A _{continuous} /22A _{peak}
G361-xx14	14A _{continuous} /42A _{peak}
G361-xx20	20A _{continuous} /45A _{peak}
G361-xx25	25A _{continuous} /70A _{peak}
G361-xx30	30A _{continuous} /90A _{peak}
G361-xx50	50A _{continuous} / 140A _{peak}
G361-xx60	60A _{continuous} /180A _{peak}
G361-xx1x	100A _{continuous} / 300Å _{peak}

Table 1.5 DS2100 Power Amplifier Ratings

Two levels of thermal protection which limit the peak current and the time for which it is available protect the DS2100 drives. These are:

- RMS Protection,
- Thermal Foldback.

1.5.4.1 RMS Protection

The RMS protection acts to limit the current provided to the rated continuous current of the drive. Thus, a G361-x006 cannot supply, on average, greater than 6A_{continuous} RMS to the motor. The current to the motor is averaged and if it exceeds the RMS rating, the drive limits the current command. If the controller continuously demands current greater than the drive capability, the RMS protection will limit the actual current supplied to the drive rating. The time for which peak current can be supplied is dependent on whether the motor is stalled or running.

1.5.4.2 Thermal Foldback

Thermal foldback is implemented in the DS2100 drives to prevent the junction temperatures of the amplifier bridge IGBT's exceeding their maximum rated temperature. The thermal foldback is based on a measure of the heatsink temperature and the mode in which the drive is operating (motor running or stalled). As the heatsink temperature increases, the peak current capability of the drive is reduced to ensure the IGBT die temperature cannot increase above the device maximum rating.

For the DS2100 D size, a simple thermal shutdown is implemented. These drives will report an overtemperature fault once the measured heatsink temperature exceeds the maximum rating of the drive.

1.6 General Functional Specifications

1.6.1 Digital Inputs (J2A)

- 8 Digital Inputs, user configurable
- Digital Input 1 Dedicated to High Power Enable
- All Optically Isolated, 12...36V Input Range.
- $5k\Omega$ input impedance.

PECIFIC
ble Input

Table 1.6 DS2100 Digital Inputs Overview : Standard Configuration

1.6.2 Digital Outputs (J2B)

- 3 Digital outputs, user configurable
- All outputs are Optically Isolated.
- Nominal ratings of 6V to 32V, 250mA
- Protected for supply range of -40V to 40V
- Short-circuit & reverse polarity protected
- Off-state leakage current <100µA at 0V

Standard Function
Drive Enabled
Limiting Function
User defined

Table 1.7 DS2100 Digital Outputs Overview

1.6.3 Standard I/O

Brake Control (J2D)	2A, 24Vd.c. solid-state high-side drive for motor brake control. Switched under user control or DS2100 software control
Motor Position Feedback Type	Resolver
(J4/J5)	Encoder Types
	• SSI
	• Hiperface
	Analogue encoders
	• Endat
Communications Interfaces (J1)	RS232 Interface at 19200Baud
Ta	ble 1.8 DS2100 Standard I/O Summary

1.6.4 Variant Specific I/O

CAN Variant (J3A, J3B)

Communications Interfaces	Controller Area Interface	
	CAN High speed (ISO11898-2) hardware-interface.	
	Optically Isolated (internally supplied power)	
	5kBaud to 1MBaud programmable	
	CANopen DS301 V4.01	
	CANopen DSP402 V2.0 Device Profile	
	Table 1.9 DS2100 CANopen	

Table 1.9 DS2100 CANopen

Page Intentionally Blank

SECTION 2: SAFETY & EMC INSTRUCTIONS

TABLE OF CONTENTS

SECTION 2	2: SAFETY & EMC INSTRUCTIONS	2-1
2.1 Gi	ENERAL	
2.2 SA	FETY REGULATIONS	
2.2.1	System Safeguards	
2.2.2	Equipment Safety	
2.2.3	Safety Requirements for Cables	
2.2.4	EMC requirements for cables	
2.3 EI	ECTROMAGNETIC COMPATIBILITY (EMC)	
2.3.1	Specific Electromagnetic Compatibility (EMC) Requirements:	
2.3.2	Recommended EMC Filters	
2.3.3	EMC requirements for cables	
2.4 UI	L REQUIREMENTS	
2.4.1	Specific UL Requirements	

2.1 General

This user's manual is intended to provide sufficient information on how to install Moog DS2100 electric motor systems. Section 2.2 covers Safety and System Safeguards. Section 2.3 covers Electromagnetic Compatibility (EMC). This user's guide must be read and understood before applying power and operating the equipment described.

This equipment must be installed and serviced only by duly qualified service personnel. All information in this manual is directed towards such persons only. Individuals responsible for the installation of the equipment described in this user's guide must ensure;

- 1) only technically qualified individuals are employed to work on the installation,
- 2) these qualified individuals must have the accompanying documentation available at all times when working on the installation and are obliged to use this documentation in a consistent manner, and
- 3) work on, or close to, the installation is prohibited for non-technically qualified individuals

Throughout this user's guide may be found **NOTES**, **CAUTIONS**, and **WARNINGS** and **CE-Compliance-Required**. They are defined as follows:

The DS2100 controller contains potentially lethal voltages. Extreme caution shall be observed whenever the equipment is in operation. Incorrect installation of the motor or the controller may cause damage to the equipment, serious personal injury or death. Consequently, the instructions in this user's manual, as well as national and local rules and safety regulations must be complied with.

2.2 Safety Regulations

- 1. The DS2100 controller must be disconnected from all power if repair work is to be carried out. Check that the mains supply has been disconnected and that at least 5 minutes has passed for the μ A size (6 minutes for A-E sizes), to allow for D.C. bus capacitors to discharge, before removing motor and mains connections.
- 2. Correct protective earthing of the equipment must be established, the user must be protected against supply voltage, and the motor must be protected against overload in accordance with applicable national and local regulations.
- 3. Do not remove the connections for the motor and mains supply while the DS2100 controller is connected to mains power. Check that the mains supply has been disconnected and that the necessary time has passed before removing motor and mains connections.

Warning against unintended start

The installation of safety interlocks, additional control and protection devices must be done in accordance with the relevant local safety requirements. Note that changes made through software can result in the motor starting suddenly.

This user's manual assumes that the user has a basic working knowledge of servo-drive products and the system motion controller. The user should provide the necessary additional training for ALL personnel working within or around the workcell.

NOTE - These safety precautions are guidelines only and are not claimed to be comprehensive. The Moog Brushless Technology products described herein, in conjunction with the system controller, provide the capability for control of remote devices. Typically, these remote devices move at high speeds and exert considerable force. Like all mechanical systems and most industrial equipment, they must be treated with respect by both the machine integrator and user, and the operator.

NOTE - This user's guide defines "user" as the responsible person or company and "operator" as a person who starts, stops or monitors workcell operation.

i

Ĭ

NOTE - This user's guide should be read by all personnel who operate or who work within or near the workcell.

Individuals responsible for the installation of the equipment described in this user's guide must ensure that only technically qualified service personnel are employed to work on the installation.

In the context of these safety instructions, skilled technical personnel means people who are familiar with the product, and have the necessary technical qualifications required for the performance of their functions.

2.2.1 System Safeguards

a) General Safety Requirements

Users are required to implement safety measures with all equipment, systems and installations into which the DS2100 Servo-drive are installed. In addition, safeguards must be an integral part of workcell design, installation, operator training and operator procedures where this equipment is used.

b) Specific Safety Requirements

The specific safety measures described below are required to be installed by the user into all equipment, systems and installations into which the DS2100 Series Controllers are installed.

The user is required to provide safety interlocks to prevent unexpected restart during servicing of the DS2100 Controller and any equipment attached to or driven by these units.

The DS2100 Servo-drives themselves must be installed in enclosures or cabinets that provide a degree of ingress protection against liquids and objects of at least IP54. These enclosures or cabinets must be accessible to technically qualified service or maintenance persons only. All external Regen (Regenerative circuit) resistors used with the DS2100 must be installed in enclosures which provide a degree of ingress protection against liquids and objects of at least IP22 and which are accessible to technically qualified service or maintenance persons only. Protection against electric shock must be maintained when installing these resistors.

The equipment may have a continuous leakage current of more than 3.5 mA A.C. or 10 mA D.C. in normal use. The DS2100 must be permanently and reliably connected to Earth and all conductive parts in the IP54 rated enclosure or cabinet must be permanently connected to Earth. The impedance between the earth terminal and any accessible part of the enclosure or cabinet should be less than or equal to 0.1Ω .

MOOG DS2100 User's Manual

A D.C component can occur in the fault current in the event of a fault connection to earth. Only a residual-currentoperated protective device (RCD) of Type B is allowed. When the protection in installations with regard to indirect contact is achieved by means of an RCD, their appropriate function/combination shall be verified.

All electrical supply wires and cables to this equipment must be installed in wireways (cable routings) which are smooth and free from sharp edges.

All external d.c. supply voltages used with the DS2100 Series Controllers must be derived from a Safety Extra Low Voltage (SELV) supply as defined by standard EN60950. Such SELV voltages do not exceed a value of 60 Vd.c. or 42.4 Va.c. peak under normal conditions and are supplied by circuits which are separated from all hazardous voltage conductors by permitted safety methods such as reinforced insulation.

All external electrical wiring connected to this equipment must be colour coded in accordance with European Standard EN 60204-1 requirements.

All wires and cables entering and leaving the IP54 rated enclosures or cabinets containing the DS2100 Controllers and Regen resistor(s) must be protected and anchored in accordance with the requirements of EN 60204-1.

As no fuses are provided inside the drive, the DS2100 must be provided with suitable fusing to protect the drive. The fuses required for each DS2100 model are detailed in the following table It is recommended to use UL certified fuses and fuse blocks

SECTION 2: SAFETY & EMC INSTRUCTIONS

DS2100 Models		Siz	ze μA					
Size	3/11 6/22						Notes	
Short Circuit Rating		5,000	Amps _{rms}					
Power Line Fuse		25A, 660V	FWP25-A1F			Semiconductor		
						(Coc	per Bussmann)	
Recovery Resistor Fuse	Conta	act Moog Applicat	ion Engineerin	g for Advice				
24Vdc Auxiliary Power Supply Fuse		3A	, 250V			Del	ayed	
DS2100 Models		Size A		Size B				
Size		8/22		14/42			Notes	
Short Circuit Rating		5,000	Amps _{rms}					
Power Line Fuse		50-F	E 690V			Sen	niconductor	
						(Coc	per Bussmann)	
Recovery Resistor Fuse	Conta	Contact Moog Application Engineering for Advice						
24Vdc Auxiliary Power Supply Fuse		3A, 250V						
DS2100 Models		Size C		Siz	e D		Notes	
Size	20/45	25/70	30/90	50/140	60/18	80		
Short Circuit Rating		5,000 Amps _{rms}		10,000	Amps _{rms}			
Power Line Fuse		100-FE 690V		160-FE	E 690V		Semiconductor	
							(Cooper Bussmann)	
Recovery Resistor Fuse	Co	ontact Moog Appli	cation Enginee	ring for Advic	e			
24Vdc Auxiliary Power Supply Fuse		,	3A, 250V				Delayed	
DS2100 Models		Size E					Notes	
Size		100/300						
Short Circuit Rating		10	,000 Amps _{rms}					
Power Line Fuse	315-FM						Semiconductor	
							(Cooper Bussmann)	
Recovery Resistor Fuse	Co	ontact Moog Appli	cation Enginee	ring for Advic	e			
24Vdc Auxiliary Power Supply Fuse		<u>.</u>	3A, 250V				Delayed	

Table 2.1 Recommended DS2100 Fusing

WARNING – In the event of a fuse failure, remove all power, refrain from working on the unit for at least 5minutes for the μA size (6 minutes for the A-E sizes) to allow all internal voltages to decay to a safe level. Remove all fuses from the system. Determine the source of the failure before re-commencing operation of the drive.

2.2.2 Equipment Safety

All persons must observe sound safety practices during the operation and testing of all electrically powered equipment.

Prior to first use, power should not be applied to the DS2100 Servo-drive until all instructions in the Wiring and Installation section of this User's manual have been carried out.

WARNING - DO NOT remove or replace any assemblies, subassemblies or components with primary power present.

WARNING - Lethal voltages remain present within this equipment when the mains power is removed. It is recommended to refrain from commencing any servicing, maintenance, repair or upgrading of this equipment until at least 5 minute for the μ A size (6 minutes for the A-E sizes) after power shutdown. It is further recommended to measure the voltage level at all high voltage terminals before commencing any such activities, to ensure that no lethal voltages are present.

WARNING – The removable plug-in connectors of the DS2100 Servo-Drives are for ease of wiring installation. These removable plug-in connectors are not suitable for connection or disconnection under power. All connections must be made with power removed.

WARNING - Repair or internal adjustments to the DS2100 Series Controllers must not be attempted. All faulty items must be returned to Moog Service Centres for maintenance and repair.

WARNING - Entering the workcell when HIGH POWER or PROGRAM RUNNING indicators are ON may result in severe injury.

WARNING - The equipment described in this user's guide operates at voltage levels, which can exceed 800 volts D.C., and/or 460 volts A.C. These levels are a potential source of severe electrical shock. DO NOT remove or replace any assemblies, subassemblies or components with the primary power present. To avoid possible personal injury or equipment damage, always remove power BEFORE attempting repair or upgrade procedures. Wait at least 5 minutes for the μ A size (6 minutes for the A-E sizes) after power shutdown to ensure power supply capacitors have discharged. Then using a voltmeter, check for safe levels across all high voltage power terminals.

Safeguards should be an integral part of a work cell design, installation, operator training, and operator procedures. A computer-controlled system may activate remote devices under program control at times not anticipated by personnel. It is critical that safeguards be in place to prevent personnel from entering the work cell whenever equipment power is present. Moog highly recommends the use of work cell safety features such as light curtains, safety gates or safety floor mats to prevent access to the workcell while power is present. Computer controlled systems have various communication features which may aid the user in constructing system safeguards, including:

- emergency stop circuitry
- binary input and output lines
- spare system-controlled user lines

The emergency power-off circuitry of a computer-controlled system is generally capable of switching external power systems, as well as detecting intrusion signals from safety barriers.

All personnel must observe sound safety practices during the operation and testing of all electrically powered equipment. To avoid injury or damage to equipment, always remove power BEFORE attempting ANY repair or upgrade activity.

2.2.3 Safety Requirements for Cables

User's whose machine installations require CE-Compliance should read this Section.

a) Requirements - Conductors and Cables

All cables and conductors used shall be specified as compliant with the requirements of European Standard EN 60204-1 and other known National and International Standards for the environment in which they are installed and for the voltage and current carried.

Conductors and cables shall be specified and selected so as to be suitable for the operating conditions (e.g. voltage, current, protection against electric shock, grouping of cables) and external influences (e.g. ambient temperature, presence of water or corrosive substances, mechanical stress) which can exist.

	DS2100 Models						
		μA		μА Α		В	
Cable	3/11 AWG (mm ²)	6/22 AWG (mm ²)	8/22 AWG (mm ²)	14/42 AWG (mm ²)			
Line Power	3x14 (2.1)	3x14 (2.1)	3x14 (2.1)	3x12 (3.3)			
Protective Bonding Cable	1x 6 (13)	1x 6 (13)	1x 6 (13)	1x 6 (13)			
Motor Power Cable	4x14 (2.1)	4x14 (2.1)	4x14 (2.1)	4x12 (3.31)	Shielded		
Regen Resistor Cable	2x14 (2.1)	2x14 (2.1)	2x14 (2.1)	2x14 (2.1)	Shielded		
DC Bus Cable	2x14 (2.1)	2x14 (2.1)	2x14 (2.1)	2x14 (2.1)	Shielded		
Safety Interlock (If applicable)	2x22 (0.3)						
24V Power Cable	2x14 (2.1)						

The following table details the recommended cable dimensions for all DS2100 models

Note: 2x14 (2.08) = Number of conductors x conductor size (AWG = American wire gauge)

	DS2100 Models						
	С						
Cable	20/45 AWG (mm ²)	25/70 AWG (mm ²)	30/90 AWG (mm ²)	50/140 AWG (mm ²)	60/180 AWG (mm ²)		
Line Power	3x8 (8.4)	3x8 (8.4)	3x8 (8.4)	3x 6 (13)	3x 4 (21)		
Protective Bonding Cable	1x 6 (13)	1x 6 (13)	1x 6 (13)	1x6 (13)	1x4 (21)		
Motor Power Cable	4x8 (8.4)	4x8 (8.4)	4x8 (8.4)	4x6 (13)	4x4 (21)	Shielded	
Regen Resistor Cable	2x8 (8.4)	2x8 (8.4)	2x8 (8.4)	2x 6 (13)	2x4 (21)	Shielded	
DC Bus Cable	2x8 (8.4)	2x8 (8.4)	2x8 (8.4)	2x 6 (13)	2x4 (21)	Shielded	
Safety Interlock (If applicable)	2x22 (0.3)						
24V Power Cable		Shielded					

	DS2100 Models	Notes
	Е	
Cable	100/300 AWG (mm ²)	
Line Power	3 x 1 (42)	
Protective Bonding Cable	1 x 1 (42)	
Motor Power Cable	4 x 1 (42)	Shielded
Regen Resistor Cable	2 x 2 (34)	Shielded
DC Bus Cable	2 x 1 (42)	Shielded
Safety Interlock (If applicable)	2x22 (0.3)	Shielded
24V Power Cable	2 x 14 (2.1)	Shielded

Table 2.2 DS2100 Cable Dimensions

MOOG DS2100 User's Manual

Wherever possible, insulated conductors and cables that have flame-retardant properties shall be used.

Where insulated conductors and cables can constitute a fire hazard due to the propagation of a fire or the emission of toxic or corrosive fumes (e.g. PVC), guidance from the cable supplier should be sought. In particular it is important to maintain the integrity of circuits having a safety function (e.g. emergency stop) for as long as possible under these conditions.

The mechanical strength and thickness of the insulation shall be such that the insulation cannot be damaged in operation or during laying, especially for cables pulled into ducts.

The voltage drops on cables and conductors shall not exceed 5% of the nominal voltage. The current carrying capacity of the conductors and cables is determined by both:

- the maximum allowable conductor temperature under the highest possible steady state current under normal conditions; and
- the ultimate allowable short-time conductor temperature under short circuit conditions.

b) Wiring Practices - Connections and routing

All connections, especially those of the protective bonding circuit, shall be secured against accidental loosening.

c) Wiring Practices - Conductor and cable runs

Conductors and cables shall be run from terminal to terminal without splices or intervening joints

Where it is necessary to connect and disconnect cables and cable assemblies, sufficient extra length shall be provided for this purpose.

The terminations of multicore cables shall be adequately supported where undue strain can be exerted on the terminations of the conductors.

Wherever possible, the protective conductor shall be placed close to the associated live conductors in order to decrease the impedance of the loop.

d) Wiring Practices - Conductors of different circuits

Subject to the constraints for EMC suppression given in this User's manual, conductors of different circuits may be laid side by side. They may occupy the same duct (e.g. conduit, cable trunking system) and may be in the same multicore cable, provided that the arrangement does not impair the proper functioning of the respective circuits. Where these circuits operate at different voltages, the conductors shall be either separated by suitable barriers or insulated for the highest voltage to which any conductor within the same duct can be subjected.

Circuits which are not switched off by the supply disconnecting device (circuit breaker) shall be either physically separated from other wiring or distinguished by colour (or both) so that they can be identified as being live when the supply disconnecting device is in the OFF or OPEN position.

e) Wiring Practices - Identification of conductors

For safety reasons, the colour Green or the colour Yellow shall not be used where there is a possibility of confusion with the bicolour combination GREEN-AND-YELLOW.

Colour identification using combinations of colours may be used provided there can be no confusion and that GREEN or YELLOW is not used, except in the bicolour combination GREEN- AND-YELLOW.

f) Wiring Practices - Identification of the protective conductor

The protective conductor shall be readily distinguishable by shape, location, marking or colour. When identification is by colour alone, the bicolour combination GREEN-AND-YELLOW shall be used throughout the length of the conductor. This colour identification is strictly reserved for the protective conductor.

For insulated conductors, the bicolour combination GREEN-AND-YELLOW shall be such that on any 15mm length, one of the colours covers at least 30% and not more than 70% of the surface of the conductor, the other colour covering the remainder of the surface.

Where the protective conductor can be easily identified by its shape, position or construction (e.g. braided conductor), or where the insulated conductor is not readily accessible, colour coding throughout its length is not necessary. However, the ends or accessible positions shall be clearly identified by the graphical symbol or by the bicolour combination GREEN-AND-YELLOW.

g) Wiring Practices - Identification of the neutral conductor

Where a circuit includes a neutral conductor identified by colour, the colour shall be LIGHT BLUE. LIGHT BLUE shall not be used for identifying any other conductor where confusion is possible.

In the absence of a neutral conductor, a LIGHT BLUE conductor may be used for other purposes except for use as a protective conductor.

Where identification by colour is used, bare conductors used as neutral conductors shall be either coloured by a LIGHT BLUE stripe, 15 mm to 100 mm wide, in each compartment or unit or at each accessible position, or coloured LIGHT BLUE throughout their length.

h) Wiring Practices - Wiring inside enclosures

Panel conductors shall be supported where necessary to keep them in place. Non-metallic channels or conduits shall be permitted only when made with a flame-retardant insulating material. Where possible earthed shielded metal cable ducting should be used to minimise EMC noise coupling.

It is recommended that electrical equipment mounted inside the enclosures be designed and constructed in such a way as to permit modification of the wiring from the front of the enclosure. Where this is not possible and control devices are connected from the rear of the enclosure, access doors or swing-out panels shall be provided.

Connections to devices mounted on doors or to other movable parts shall be made using flexible conductors in accordance with European standard EN 60204-1, to allow for the frequent movement of the part. The conductors shall be anchored to the fixed part and the movable part independently of the electrical connections.

Conductors and cables that do not run in ducts shall be adequately supported.

Terminal blocks or attachment plug/socket combinations shall be used for control wiring that extends beyond the enclosure.

Power cables and cables of measuring circuits may be directly connected to the terminals of the devices for which the connections were intended.

i) Wiring Practices - Wiring outside enclosures

The means of introduction of cables or ducts with their individual glands, bushings, etc., into an enclosure shall ensure that the degree of protection is not reduced.

Conductors and their connections external to the electrical equipment IP54 enclosures shall be installed in suitable ducts (i.e. conduit or cable trunking systems) as described in Section 2.2.4, except for suitably protected cables, which may be installed without enclosing ducts and with or without the use of open cable trays or cable support means.

Fittings used with ducts or multi-conductor cable shall be suitable for the physical environment.

MOOG DS2100 User's Manual

Flexible conduit or flexible multi-conductor cable shall be used where it is necessary to employ flexible connections to pendant push-button stations. The weight of pendant stations shall be supported by means other than the flexible conduit or the flexible multi-conductor cable, except where the conduit or cable is specifically designed for that purpose.

Flexible conduit or flexible multi-conductor cable shall be used for connections involving small or infrequent movements. They shall also be permitted to complete the connection to normally stationary motors, to position switches, and to other externally mounted devices.

Connections to frequently moving parts shall be made with conductors suitable for flexing service in accordance with European standard EN 60204-1. Flexible cable and flexible conduit shall be so installed as to avoid excessive flexing and straining particularly at the fittings.

Cables subject to movement shall be supported in such a way that there is no mechanical strain on the connection points nor any sharp bending. The loop shall have sufficient length to provide for a bending radius of the cable of at least ten times its outside diameter.

Where cables subject to movement are close to moving parts, precautions shall be taken so that a space of at least 25mm shall be maintained between the moving parts and the cables. Where this distance is not practicable, fixed barriers shall be provided between the cables and the moving parts.

The cable sheath shall be resistant to the normal wear which can be expected from movement, and to the effects of atmospheric contaminants (e.g. oil, water, coolants, dust).

Where flexible conduit is adjacent to moving parts, the construction and supporting means shall prevent damage to the flexible conduit or cable under all conditions of operation.

Flexible metal conduit shall not be used for rapid or frequent movements, except when specifically designed for that purpose.

j) Wiring Practices - Ducts, connection and junction boxes

All sharp edges, flash, burrs, rough surfaces, or threads, with which the insulation of the conductors may come in contact, shall be removed from ducts and fittings. Where necessary, additional protection consisting of a flame-retardant, oil-resistant insulating material shall be provided to protect conductor insulation.

Ducts and cable trays shall be rigidly supported and positioned at a sufficient distance from the moving parts and in such a manner so as to minimise the possibility of damage or wear.

Cable trunking systems external to enclosures shall be rigidly supported and clear of all moving or contaminating portions of the machine or equipment into which they are installed.

2.2.4 EMC requirements for cables

User's whose machine installations require for CE-Compliance should read this Section.

Avoid close parallel routing of signal cables and power cables. Always use the minimum length of cable necessary and install all cables in a fixed routing.

Data signal cables, motor power and resolver/signal cables, regen resistor cables and power input cables shall have segregated routings. Where cable routings must intersect, it is recommended that they intersect at an angle of 90 degrees, to minimise EMC noise coupling.

Where signal and power cables must run in parallel it is recommended that these cables are separated by at least 20 cm. Where possible cables shall be routed in earthed shielded cable ducting, to minimise electromagnetic noise coupling.

Use shielded cable to connect the external regen resistor (if installed) to the DS2100. The length of this cable shall be as short as possible. The shields of these voltage supply cables shall be earthed to Chassis Earth using the EMC kit or the panel earth bar. Alternatively, if the cable is required to pass through an enclosure panel earthed to Chassis Earth, the shield may be earthed to the panel by use of a 360 degree metal cable gland.

Cables supplying external d.c. supply voltages to the DS2100 Servo-drive (For example, the 24 Vd.c. supply) must be as short as possible. The supply wires shall be twisted together or alternatively shielded cable shall be used.

Cables connecting the d.c. bus from the DS2100 Servo-drives must be as short as possible. Shielded cable shall be used.

Motor power cables must be shielded with the cable shield securely connected to Chassis Earth at both ends of the cable. At the DS2100 end of the cable the shield shall be earthed to Chassis Earth using the EMC kit or the panel earth bar.

Motor resolver/signal cables must be shielded with the cable shield securely connected to Chassis Earth at both ends of the cable.

Signal cables must be shielded with the cable shield securely connected to make a good HF earth bond to Chassis Earth at both ends of the cable.

2.3 Electromagnetic Compatibility (EMC)

User's whose machine installations are intended for CE-Compliance should read this Section.

The DS2100 Servo-drive are system components which must be installed in a correct manner to ensure that all electromagnetic compatibility (EMC) requirements are met. The requirements of European Union (EU) EMC Directive: 89/336/EEC (as amended by EU Directives 92/31/EEC and 93/68/EEC) must be met by all equipment, systems and installations into which the DS2100 Servo-drive are installed.

For further information on the requirements of EU EMC Directive the user is recommended to refer to the latest publications of the EU Commission and to local regulations.

The DS2100 Servo-drive have been tested for compliance with the requirements of the EU EMC Directive in so far as they can be regarded as single functional units. The DS2100 have been tested in typical configurations and it has been found that these configurations meet the essential requirements of the EU EMC Directive. The EMC standards applied is EN61800-3:

This standard is published by CENELEC, the European Committee for Electrotechnical Standardisation, Brussels.

2.3.1 Specific Electromagnetic Compatibility (EMC) Requirements:

The EMC measures outlined below are required to be installed by the user into all equipment, systems and installations into which the DS2100 is installed. Further details are given throughout this User's Guide.

The DS2100 Servo-drive must be installed by mounting on a panel in a manner that ensures that EMC earthing requirements are met. (Refer Section 3 of this User's Guide).

EMC brackets are provided to facilitate earthing of cable shields prior to entering the DS2100. Cable shields must be bonded to either the panel earthing bar or the EMC brackets.

For safety reasons the DS2100 Servo-drive, and the panel on which they are mounted must be installed in enclosures or cabinets which provide a degree of ingress protection against liquids and objects of at least IP54. These enclosures or cabinets must be accessible to technically qualified service or maintenance persons only.

For Electrostatic Discharge (ESD) reasons all service or maintenance persons must ground themselves to the chassis of the equipment when performing service functions inside the IP54 rated enclosure or cabinet in which the DS2100 Servodrive are installed.

All external d.c. supply voltages used with the DS2100 must be supplied from power supplies which are compliant with the requirements of the EU EMC Directive. All other equipment that is connected to the DS2100 must be compliant with the EU EMC Directive.

Shielded cable is required to be installed by the user for many external user cable connections to the DS2100. Details of areas where shielded cable must be installed and details of earthing arrangements which must be implemented for the shields of such cables are given throughout Section 3 of this User's Guide.

This equipment intended to be connected to an industrial low-voltage power supply network, or public network, which does not supply buildings used for domestic purposes (second environment, according to EMC Standards). If connected to a low-voltage public network that supplies domestic premises (first environment), this product is expected to cause radio interference in which case supplementary measures may be required.

2.3.2 Recommended EMC Filters

No internal filtering is provided in the DS2100. To ensure EMC compliance an external line filter must be installed. The recommended filters for the DS2100 are detailed below.

DS2100 µA Size

Moog Order	Manufacturer	Rated Current (A)	Max Voltage	Drive Input
Code		$@ 50^{\circ}C (40^{\circ}C)$		
-	Schaffner Fairite Clamp. Part	-	-	24V _{dc} Input
	# 00443164151			(4 Turns in Common Mode)
AT6009	Schaffner FN 258-7/07	7 (8.4)	3x480V	3-phase AC Line Input
-	Schaffner FN 350-12/29	12 (13.8)	1x250V	1-phase AC Line Input
				(µA 3/11 only)

DS2100 A,B,C,D, E Sizes

Moog Order	Manufacturer	Rated Current (A) $(A_0)^{\circ}C(A_0)^$	Max Voltage	Drive Input\Size
	S.1. (f EN2070.2.0)	@ J0 C (40 C)	25011	2434 1
A16017	Schaffner FN2070-3-06	(3)	250V	$24 V_{dc}$ Input
AT6009	Schaffner FN258-7/07	7 (8.4)	3x480V	3-phase AC Line Input
				(Size A)
AT6010	Schaffner FN258-16/07	16 (19.2)	3x480V	3-phase AC Line Input
				(Size B)
AT6011	Schaffner FN258-30/07	30 (36)	3x480V	3-phase AC Line Input
				(Size C)
AT6012	Schaffner FN258-42/07	42 (50.4)	3x480V	3-phase AC Line Input
				(Size D 50/140)
AT6013	Schaffner FN258-55/07	55 (66)	3x480V	3-phase AC Line Input
				(Size D 60/180)
AT6015	Schaffner FN258-100/35	100 (113)	3x480V	3-phase AC Line Input
				(Size D 100/300)

 Table 2.3 Recommended EMC Filters for DS2100

¹ The 24Vdc filter can be used with two DS2100 drives. If more than two DS2100 drives are in use on a machine, a filter from the same series can be used with a higher current rating.

MOOG DS2100 User's Manual

Moog	Manufacturer				Dimensio	ons			Weight
Order Code			[mm]						
		L1	L2	L3	L4	L5	L6	L7	[kg]
AT6017	Schaffner	85	75	54	0	65	40.3	Fast-on	0.25
	FN2070-3-06								
AT6009	Schaffner	255	240	50	25	225	126	300	1.1
	FN 258-7/07					±0.8	±0.8		
-	Schaffner FN350-	99.5	51	105	95	99.5	57	Terminal	0.9
	12/29							blocks only	
AT6010	Schaffner FN258-	3.5	290	55	30	275±0.8	142±0.8	300	1.7
	16/07								
AT6011	Schaffner FN258-	335	320	60	35	305	150	400	1.8
	30/07								
AT6012	Schaffner FN258-	329	314	70	45	300	185	500	2.8
	42/07								
AT6013	Schaffner FN258-	329	314	80	55	300	185	500	3.1
	55/07								
AT6015	Schaffner FN258-	379	364	90	65	350	220	Terminal	5.5
	100/35							blocks only	

The following table details the mechanical dimensions of the recommended filters.

TOP VIEW

SIDE VIEW

Table 2.4 DS2100 Recommended Filters Mechanical Sizing

Caution: A space of at least 60mm (2.4") must be left around the filter for air circulation when the cabinet does not have forced ventilation.

The filter must be located as close as possible to the drive input. If the separation between filter and drive exceeds 30 cm (1'), then a flat cable (multi-thread copper flat cable) should be used for the RF connection between filter and drive.

Before mounting the drive and the filter to the cabinet, check that the panel surface is conductive. If not, remove any paint and/or other insulating material before mounting the drive and filter.

EMC filter can produce high leakage currents to ground (Protective Earth). The current levels associated with individual filters are detailed in the associated filter datasheet.

WARNING: High voltage –Internal filter capacitors discharge time: approx. 10 seconds.

2.3.3 EMC requirements for cables

User's whose machine installations require for CE-

Compliance should read this Section .

Avoid close parallel routing of signal cables and power cables. Always use the minimum length of cable necessary and install all cables in a fixed routing.

Data signal cables, motor power and resolver/signal cables, regen resistor cables and power input cables shall have segregated routings. Where cable routings must intersect, it is recommended that they intersect at an angle of 90 degrees, to minimise EMC noise coupling.

Where signal and power cables must run in parallel it is recommended that these cables are separated by at least 20 cm. Where possible cables shall be routed in earthed shielded cable ducting, to minimise electromagnetic noise coupling.

Use shielded cable to connect the external regen resistor (if installed) to the DS2100. The length of this cable shall be as short as possible. The shields of these voltage supply cables shall be earthed to Chassis Earth using the EMC kit or the panel earth bar. Alternatively, if the cable is required to pass through an enclosure panel earthed to Chassis Earth, the shield may be earthed to the panel by use of a 360 degree metal cable gland. If this is not possible, a copper strap of minimum length should be used. See Figure 2.1 **Partition Crossing**

Figure 2.1 Partition Crossing

DS2100 User's Manual

All external Regen (Regenerative circuit) resistors used with the DS2100 must be installed in conductive enclosures which provide a degree of ingress protection against liquids and objects of at least IP22. Any paint on the panel or regen resistor enclosure must be removed before the regen resistor enclosure is mounted.

Cables supplying external d.c. supply voltages to the DS2100 Servo-drive (For example, the 24 $V_{d.c.}$ supply) must be as short as possible. The supply wires shall be twisted together or alternatively shielded cable shall be used. The 24 $V_{d.c.}$ supply should be routed as far from the motor power cable as possible to ensure EMC compliance.

Cables connecting the d.c. bus from the DS2100 Servo-drives must be as short as possible. Shielded cable shall be used.

Motor power cables **MUST** be shielded with the cable shield securely connected to Chassis Earth at both ends of the cable. At the DS2100 end of the cable, the shield shall be earthed to Chassis Earth using the EMC kit or the panel earth bar. The correct method to earth the shield is shown in **Figure 2.2 Correct Cable Preparation Grounding of Shield to Chassis**

Figure 2.2 Correct Cable Preparation Grounding of Shield to Chassis

Motor resolver/signal cables must be shielded with the cable shield securely connected to Chassis Earth at both ends of the cable.

Signal cables must be shielded with the cable shield securely connected to make a good HF earth bond to Chassis Earth at both ends of the cable.

Typical cable shield terminations for each of the cables on each DS2100 size are shown in the following figures.

Figure 2.3 DS2100 µA Cable Shield Terminations

Figure 2.5 DS2100 C Cable Shield Terminations

SECTION 2: SAFETY & EMC INSTRUCTIONS

Figure 2.6 DS2100 D Cable Shield Terminations

SECTION 2: SAFETY & EMC INSTRUCTIONS

Figure 2.7 DS2100 E Cable Shield Terminations

2.4 UL Requirements

Detailed below are the specific UL requirements for the DS2100.

2.4.1 Specific UL Requirements

- Usage: The DS2100 shall be used according to the guidelines given in this manual.
- Ratings: The DS2100 shall be used within the ratings specified in the markings on the equipment.
- **24V Logic Supply:** The 24V supply is intended for use in the secondary of a Class 2 supply. Alternatively, it should be additionally fitted with a Listed current limiting fuse, rated 3A on the supply input to the device.
- Surrounding Air Temperature:- "Maximum Surrounding Air Temperature, 40°C".
- Pollution Degree 2 Installation:- The drive must be installed in a Pollution Degree 2 environment.
- Equipment Designation: Open Type Equipment.
- Short circuit Ratings:-

DS2100 3/11, 6/22, 8/22, 14/42, 20/45, 25/70, 30/90, 50/140: "Equipment suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical Amperes, 460V ac + 10% Maximum".

DS2100 60/180, 100/300: "Equipment suitable for use on a circuit capable of delivering not more than 10000 rms symmetrical Amperes, 460V ac + 10% Maximum".

• **Branch Circuit Protection**. The Branch Circuit Protection for short circuit protection shall be provided in the end use application by external fuses. Recommended fuses are manufactured by Cooper Bussmann.

DS2100 3/11 & 6/22:	Fuse Model No. FWP-25A14F Semiconductor Type Fuses
DS2100 8/22 & 14/42:	Fuse Model No. 50FE Semiconductor Type Fuses.
DS2100 20/45, 25/70 30/90:	Fuse Model No: 100FE Semiconductor Type Fuses.
DS2100 50/140 & 60/180:	Fuse Model No: 160FEE Semiconductor Type Fuses.
DS2100 100/300 :	Fuse Model No: 315-FM Semiconductor Type Fuses.

- Wiring. The drive shall be wired with stranded and \ or solid copper (Cu), 60/75°C conductors only. The tightening torque for terminal blocks specified in Section 3 of this manual shall be applied. These requirements do not apply to the control circuit terminals.
- **Regeneration Resistor**. The regeneration resistor, when external, shall be wired with R/C (AVLV2) rated wire or shall be insulated with R/C (YDPU2) or R/C (UZCW2) rated insulation.
- Field Wiring. The power connector of the DS2100 µA (J6) is not rated as a Field Wiring Terminal. This connector may only be used as a Factor Wiring Terminal block.
- **Over-speed Protection**: The DS2100 incorporates a software-based over-speed protection. See 'Motor Rating Parameters' and 'Velocity Limiting' in Section 5 of this Manual.

SECTION 2: SAFETY & EMC INSTRUCTIONS

- Motor Overload Protection: The DS2100 does not incorporate an internal motor load protection. The drive is intended to be used with motors that have integral thermal protection in the form of an NTC or PTC thermistor. The selections of NTC or PTC and overtemperature fault level are set in software. See 'Motor Thermal Parameters' and 'Motor Thermal Protection Mechanism' in Section 5 of this manual.
- **Overcurrent Protection:** The DS2100 is equipped with internal over current protection. See the 'Cabling and Interconnect Protection Scheme' detailed in Section 5 of this manual.
- The Integral Motor Thermal Protection signal shall be connected on the equipment, on G361 connectors J4/J5 (PIN 8-15/6-8), which accepts signals maximum 5.5 Vdc ±10%, 400 μA. The ultimate result of this signal is to "Switch-OFF" the output of the Solid State Motor Controller and thereby "No-Power" is transmitted to the Motor connected to the Motor-Drive.

Page Intentionally Blank

TABLE OF CONTENTS

SECTION 3	: WIRING AND INSTALLATION	
3.1 Sy	/stem Components	
3.1.1	A.C. Mains Power Interface	
3.1.2	A.C. Input Line Protection	
3.1.3	Line Filter Requirements	
3.1.4	Serial Set-up Terminal (User-Supplied)	
3.1.5	Control-Backup Power Input (User Supplied)	
3.1.6	Brushless Servo motors	
3.1.7	Heatsinks and Climatic Control	
3.2 Eo	quipment Mounting	
3.2.1	CE Items for Mechanical Installation	
3.3 Po	ower Dissipation	
3.4 D	S2100 Connector Terminals	
3.5 G	eneral System Wiring Guidelines	
3.5.1	Drive Contactor (User Supplied)	
3.5.2	Wiring notes for J6, J7, J9 connectors (Size C)	
3.6 Se	equence of Component Wiring Recommendations	
3.7 TI	rree-Phase A.C. Mains Power Source Configuration	
3.7.1	AC Mains Power Source Connection	
3.7.2	Softstart & Power Cycling Frequency Limits	
3.8 24	V Backup Connection	
3.8.1	Size uA 24V Input Connection	3-34
3.8.2	Size A.B.C. D & E 24V Input Connection	3-35
383	Auxiliary 24V Fan connection (Size E)	3-36
39 P	aralleling DS2100 Units through the D C Bus	3-37
391	uA Size DC Bus Inter-connection	3-37
392	A & B Size DC Bus Inter-connection	3-38
393	C Size DC Bus Inter-connection	3_30
394	D Size DC Bus Inter-connection	3-40
395	E Size DC Bus Inter-connection	3_41
3 10 In	ternal/External Regeneration (Regen) Resistors – Configurations	3_42
3 10 1	UA Size Degeneration Desistor Connection	3 /3
3.10.1	A B Size Regeneration Resistor connection	
3 10 3	C Size Degeneration Desistor connection	
3 10 4	D Size Regeneration Resistor connection	3 45
3.10.4	E Size Regeneration Projector connection	
2.10.3	E Size Regeneration Resistor connection	
2 11 1	Assambling Motor Desclar and Dewar Cobles	
3.11.1 2.11.2	Assembling Motor Resolver and Fower Cables	
3.11.2	Motor Proke Connection	
2 11 4	Motor Pacalvar Connection	
2 11 5	Motor Encoder Connection	
2 11 6	Motor Potetion Direction	
2 12 D	S2100 Control Input and Outputs	
3.12 D	Conoral Purpose Description of the Digital Inputs	
3.12.1	Constal Purpose Description of the Digital Inputs	
3.12.2	Deven Sequencing on Stortun	
3.12.3	1 Ower Sequellellig on Statiup	
2 12 1	PS222 Sarial Communications Interface	
J.1J.1 2 12 0	CAN Coble Wiring	
2 1 / W	Crity Cauld Willing	
J.14 W	ning Summary	
3.14.1	μA Size Power Stage	
5.14.2	A & B Size Power Stage	
5.14.3	C Size rower Stage	
3.14.4	D Size Power Stage	3-76

3.14.5	E Size Power Stage	3-77
3.14.6	Control Card	3-78

This section covers the installation, wiring and cabling of the Moog DS2100 Servo-drive series. A pictorial diagram of a single-axis system, with typical components included, is shown in Figure 3.1. Users are directed to read Section 2, Safety Instructions, before proceeding with wiring and installation.

WARNING - This equipment must be permanently and reliably connected to Earth and all conductive parts in the IP54 rated enclosure in which the DS2100 Series Servo-drive is installed must be reliably connected to Protective Earth. A Protective Earth connection must come directly from an approved AC mains network. Stranded copper-wire is recommended to carry the earth.

FAILURE TO PROVIDE AN ADEQUATE EARTH MAY CAUSE SERIOUS PERSONAL INJURY AND EQUIPMENT MALFUNCTION.

3.1 System Components

The following components are required to build a Moog brushless motor digital control system (refer to Figure 3.1). The user supplies all components besides the DS2100, EMC-Brackets, motor and other accessory cabling.

3.1.1 A.C. Mains Power Interface

The DS2100 should be connected to a three-phase AC supply. Operation with a single-phase supply is only allowed with the G361-x003 and G361-x006 variants of the drive. For single-phase operation, the phase supply voltage must be limited to 230V and the input power to the drive limited to 1.1kW.

3.1.2 A.C. Input Line Protection

Details of the recommended Line fuses are given in Section 2 of this manual. Alternatively an AC mains Circuit Breaker (Instantaneous Trip Type) can be used as a protective device providing its ratings are equivalent to the recommended fuses.

After a power loss to the servo-drive, the motor will continue running until its stored energy is dissipated through friction alone, or will be stopped by a motor-equipped brake if a brake is available.

It is also recommended to install a contactor rated for the DS2100 input between the line fuses and the EMC filter at the input of the DS2100 (refer to Figure 3.1). This contactor should be controlled directly by user supplied Emergency Stop Buttons and other series connected safety switches to remove AC input power in any situation affecting personnel safety.

WARNING - The supply-disconnecting device (circuit breaker) must be switched to the OFF position before any service or maintenance activity is commenced.

3.1.3 Line Filter Requirements

Details of the recommended line filters for each of the DS2100 variants are given in Section 2 of this manual.

Figure 3.1Typical DS2100 System Components (µA Size)

3.1.4 Serial Set-up Terminal (User-Supplied)

An RS-232 interface should be established for individual servo-drive communications, using a PC. The PC can run Moog's WinDrive Windows-based user-interface program.

The personal computer using Windrive is a service engineering tool only and must be installed so that use of the key sequences which allow control of the machine functions is accessible to authorised qualified service personnel only. All such service set-up computers must be CE - marked as compliant with the EU EMC Directive.

3.1.5 Control-Backup Power Input (User Supplied)

The DS2100 requires a control power source to supply backup-power for the control electronics. This controlbackup power is useful where the user requires that the DS2100 does not lose absolute position data or status information when AC mains power is removed from the DS2100.

The user is directed to the local Moog sales office or authorised distributor for a recommended list of these control power source devices.

The $24V_{dc}$ control power option allows high voltage motor power to be removed from a DS2100 Series Servo-drive without losing control power.

The acceptable voltage range for this supply is $24V_{dc} \pm 10\%$ with a minimum current rating of $2A_{dc}$ per DS2100 Series Servo-drive connected. A low cost unregulated DC supply is adequate.

NOTE - The $24V_{dc}$ power supply must be compliant with the requirements of the EU EMC Directive. The $24V_{dc}$ output from the power supply must be Safety Extra Low Voltage (SELV - as defined by European standard EN 60950).

3.1.6 Brushless Servo motors

The DS2100 series Servo-drive is compatible with Moog brushless servomotors.

Normal connection to the motor requires two cables - a power and a signal cable. The power cable provides threephase stator power, protective earth and brake connections. The signal cable carries position transducer feedback signals and motor temperature detection connections.

3.1.6.1 Brushless Motor Brake 24V Power Supply

The motor brake requires a $24V_{dc}$ supply for release. This should be rated to cover at least twice the sums of the rated currents of all brakes connected.

3.1.7 Heatsinks and Climatic Control

The need for air conditioning will depend on the duty cycle of the system and the surrounding ambient temperature. The maximum allowable ambient temperature is 40° C (104° F). The humidity range is 5-95% non-condensing.

All DS2100 Servo-drives incorporate internal cooling fans and integral heat sinks. Other than controlling ambient conditions, additional heat sinking is not required.

3.2 Equipment Mounting

This section details the mechanical dimensions of the DS2100 chassis, as well as required clearances for cabling etc. The DS2100 is designed to be panel or cabinet mounted. The DS2100 must be mounted in a vertical orientation. The DS2100 must be panel mounted within an enclosure or cabinet that provides a degree of ingress protection against liquids and objects of at least IP54. Such enclosures or cabinets must be accessible to technically qualified service or maintenance persons only. It is recommended that the cabinet be ventilated using filtered or conditioned air, free of corrosive or electrically conductive contaminants. The accumulation of dust, dirt, etc. on the equipment must be avoided. A minimum clearance above and below each of the DS2100 drive sizes is required. These distances are detailed in Table 3.3-1.

DS2100 Size	Minimum Clearance Top (mm)	Minimum Clearance Bottom (mm)			
μA & A	60	100			
В	60	100			
С	80	160			
D	100	200			
Е	200	300			

Table 3.3-1 Minimum Clearance around DS2100 Drives

If any of the DS2100 units are mounted in a closed cabinet, allow 100mm clearance at the front for cable bends.

Figure 3.2 Typical DS2100 Cable Bend Radius Requirements

The DS2100 must be permanently and reliably connected to Earth and all conductive parts in the IP54 rated enclosure or cabinet must be permanently connected to Earth. The impedance between the earth terminal and any accessible part of the enclosure or cabinet should be less than or equal to 0.1Ω .

NOTE - The DS2100 Series Servo-drives are system components that must be installed in the correct manner to ensure that all electromagnetic compatibility (EMC) requirements are met. (Refer to Section 2 of this User's Guide).

The DS2100 must be mounted on a panel with a flat solid surface in a manner that ensures that EMC earthing requirements are met.

There must be a clean flat conductive surface at all of the mounting points. Remove paint or other insulating materials and provide conductive corrosion protection at the mounting points. It is important that there is good high-frequency bonding between the panel and the DS2100 Servo-drive. Conductive hex socket head bolts with conductive locking washers should be used.

Figure 3.3 DS2100 µA Mechanical & Mounting Dimensions

Figure 3.4 DS2100 A Mechanical & Mounting Dimensions

Figure 3.5 DS2100 B Mechanical & Mounting Dimensions

Figure 3.6 DS2100 C Mechanical & Mounting Dimensions

Figure 3.7 DS2100 D Mechanical & Mounting Dimensions

Figure 3.8 DS2100 E Mechanical & Mounting Dimensions

3.2.1 CE Items for Mechanical Installation

Additional electromagnetic compatibility (EMC) measures must be installed on equipment associated with the DS2100 Servo-drive. The following measures must be implemented:

- All external Regen (Regenerative circuit) resistors used with the DS2100 must be installed in enclosures which provide a degree of ingress protection against liquids and objects of at least IP22 and which are accessible to technically qualified service or maintenance persons only. Protection against electric shock must be maintained when installing these resistors.
- Use shielded cable to connect the external regen resistor (if installed) to the DS2100 power supply. The length of this cable should be as short as possible. The shields of these cables should be earthed to Chassis Earth using the optional EMC Bracket kit or the panel earth bar. Alternatively, if the cable is required to pass through an enclosure panel earthed to Chassis Earth, the shield may be earthed to the panel by use of a 360 degree metal cable gland.
- Cables supplying external d.c. supply voltages to the DS2100 Series Servo-drives (for example, the 24 Vd.c. supply) must be as short as possible. The supply wires should be twisted together or alternatively shielded cable should be used.
- Cables connecting the D.C. Bus from the DS2100 Power Supply to other DS2100 Servo-drives must be as short as possible. The supply cables should be shielded.
- Motor power cables must be shielded with the cable shield securely connected to Chassis Earth at both ends of the cable. At the DS2100 Servo-drive end of the cable, the shield should be earthed using the EMC Bracket.
- Motor feedback & signal cables must be shielded with the cable shield securely connected to Chassis Earth at both ends of the cable.
- Signal cables must be shielded with the cable shield securely connected to make a good HF earth bond to Chassis Earth at both ends of the cable.

Further details for the correct installation and shielding of cables and conductors are given in Section 2.

CAUTION - Enclosure or cabinet temperature control is critical for performance, reliability and life of electrical components. Maintaining a uniform temperature (check for hot spots) within the specified values for the equipment will prevent premature failure due to temperature stress.

3.3 Power Dissipation

To calculate cabinet cooling requirements, Table 3.3-2 provides approximate equipment power dissipation values. If the application employs regeneration, be sure to add the regen resistor power dissipation to the numbers quoted in Table 3.3-2 below, (use the continuous wattage rating of the regen resistor if the actual application regen dissipation is unknown).

	Power Dissipation								
DS2100	3Amp	6Amp	8Amp	14Amp	25Amp	30Amp	50Amp	60Amp	100Amp
(Watts)	53	100	110	180	300	400	650	800	1200

Table 3.3-2 Estimated Power Dissipation for the DS2100 Servo-drives

3.4 DS2100 Connector Terminals

Figure 3.9 to Figure 3.14 below detail the connectors on the DS2100 (all sizes).

Figure 3.9 DS2100 Control Card Connector Terminals

Figure 3.10 DS2100 Size μA Power Connector Terminals

Figure 3.11 DS2100 Size A & B Power Connector Terminals

Figure 3.13 DS2100 Size D Power Connector Terminals

Figure 3.14 DS2100 Size E Power Connector Terminals

3.5 General System Wiring Guidelines

The following is a general reminder of the cable requirements for the DS2100 Series Servo-drives and related equipment.

i

NOTE - Cabling and component wiring is critical in obtaining successful operation of the system. Pay close attention to specified wiring practice, cabling information, earthing and shielding requirements. Improper wiring can result in electrical noise generation and unstable motor performance.

Size wire in accordance with standard wiring practice and local codes for amperage and wire length requirements. Recommended wire sizes are given in Section 2.

Avoid close parallel routing of signal wires and power wires, both inside and outside of the control cabinet. High voltage bus wires should be shielded and their length should be minimised.

Ensure proper chassis earths on all equipment. Terminate all individual chassis earths from power supply and servodrives to a single tie point, (i.e. cabinet earth bus). Keep the distance from earth bus to earth ground as short as possible. Similarly, keep distance from servo-drive and power supply chassis earths to the tie point as short as possible. Chassis earth should be run close to D.C. Bus wires to minimise EMI. The impedance between the earth terminal and any accessible part of the equipment enclosure or cabinet should be less than or equal to 0.1Ω

Tighten all terminal screws securely to avoid faulty operation. Torque screws to the specified values

All power connections to the DS2100 μ A, A, B & C Series Servo-drives are through removable plug-in mating connectors. Do not solder the ends of the cables to be inserted into screw clamp terminals. All power connections to the DS2100 D & E are via screw terminal connections.

WARNING – The removable plug-in mating connectors are for ease of wiring and are not suitable for connection or dis-connection when power is applied. All dis-connections must be made with power removed.

WARNING - All electrical supply wires and cables to this equipment must be installed in conduits (cable routings) which are smooth and free from sharp edges.

CAUTION - Shielded cable is required to be installed by the user for many external user cable connections to the DS2100 Servo-drive. Details of areas where shielded cable must be installed and details of earthing arrangements which must be implemented for the shields of such cables are given in the relevant sections.

3.5.1 Drive Contactor (User Supplied)

A contactor (suitably rated for the particular DS2100) should be installed just before the AC input line filter of the DS2100. The contactor acts as a remote switch that may cut off the AC mains supply in the event of an emergency shutdown. This contactor should be sized based on the continuous power of the system.

3.5.2 Wiring notes for J6, J7, J9 connectors (Size C)

The connectors used on the DS2100 Size C are are formed using crimp terminals. The appropriate crimps (Molex type 42815-0031) are supplied together the floating connectors for J6, J7, and J9. These crimps are sized for an 8 AWG (8.4 mm²) cable with a 10 mm wire stripping. It is recommended to use the appropriate Molex crimping tool (63814-0000, or 63811-1500, or equivalent). After crimping, the contact must be inserted into the floating connector with the correct orientation and should be held in position by the TPA (Terminal Position Assurance) jumper, as shown in **Error! Reference source not found.**

Figure 3.15 DS2100 Size C Crimp Assembly

3.6 Sequence of Component Wiring Recommendations

The following sequence for wiring is a recommendation. Individual wiring steps are denoted by a box character, which can be used as an installation check off list.

The terminal block layout on all power supplies and servo-drives has been designed to isolate low voltage from high voltage circuits. Cabinet conduits should be arranged to maintain this physical separation.

a) Power Circuit Wiring

- □ Wire a 24V Logic Supply to the drive (Required on µA size drives). Fit a suitable EMC filter on the 24V logic Supply and fuse.
- □ Wire a 24V Logic Supply to the drive for fan external supply, if necessary.
- □ Wire a.c. mains input to a user supplied fuses. Make a secure and reliable connection between the chassis of the equipment and Earth.
- □ Fit a suitable EMC Mains Line Filter after the User supplied fuses and contactor.
- □ Wire a.c. mains from the user-supplied contactor to the power input poles of the DS2100.

b) Servo-drive Wiring

- □ Plug in Axis I/O cable to J2 and connect other end to user I/O equipment.
- □ Plug in resolver cable at J5 (or Encoder Cable to J4).
- □ Connect appropriate communications cabling (RS232 at J1, and/or Field Bus).

c) Motor Wiring

- **□** Repeat the steps listed in this Section for each motor in the system.
- □ Plug in and screw tight resolver/encoder cable to motor position connector.
- Plug in and screw tight motor power cable to motor power connector. Also connect the brake terminations at J2D (if provided).
- Connect motor power cable to appropriate drive power terminals.

3.7 Three-Phase A.C. Mains Power Source Configuration

The DS2100 may be supplied from a three-phase a.c. mains input. In this case the following user supplied options are required:-

- 1. Three-Phase Mains Fusing
- 2. Mains Line Filter
- 3. 24Vd.c. Power Source & Fuse
- 4. 24V d.c. EMC Filter

Note that for DS2100 sizes A,B,C, D & E, if the a.c. mains is still applied, and the control-backup power is removed, then the DS2100 control section will still operate correctly. Control power can still be generated from the high voltage D.C. Bus.

below outlines typical interconnect in a multi-axis DS2100 system, which is powered by 3-phase a.c. mains supply.

Figure 3.16 DS2100 Multi-Axis system with 3-Phase A.C. Mains Inputs

3.7.1 AC Mains Power Source Connection

3.7.1.1 Size µA

Figure 3.17 µA AC Mains Input Connection

- Fixed connector: 12 pins, male connector
- Mating connector, 12 pins, female, supplied with the drive. Phoenix Combicon (Part # GMSTB 2.5/12-ST-7.62)
- μ A size wiring: cable 14 AWG (2.1 mm²). Wire stripping: 7 mm.
- PE Stud wiring: cable 6 AWG (13mm²)
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.4	L1	Phase "L1", three-phase voltage input 230/460Vac $\pm 10\%$
J6.5	L2	Phase "L2", ", three-phase voltage input 230/460Vac $\pm 10\%$
J6.6	L3	Phase "L3", ", three-phase voltage input 230/460Vac ±10%
PE	PE	Protective Earth Stud on Chassis

Table 3.3-3 J6 AC Mains Power connector, µA Size

3.7.1.2 Size A & B

Figure 3.18 A & B AC Mains Input Connection

- Fixed connector: 10 pins, male connector
- Mating connector, 10 pins, female, supplied with the drive. Phoenix Contact (Part # PC4 HV/10-ST-7.62)
- A size wiring: cable 14AWG (2.1 mm^2) . Wire stripping: 7 mm
- B size wiring: cable 12AWG (3.3 mm²). Wire stripping: 7 mm
- PE Stud wiring: cable 6 AWG (13mm²)
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.4	L1	Phase "L1", three-phase voltage input 230/460Vac ±10%
J6.5	L2	Phase "L2", ", three-phase voltage input 230/460Vac ±10%
J6.6	L3	Phase "L3", ", three-phase voltage input 230/460Vac ±10%
PE	PE	Protective Earth Stud on Chassis

Table 3.3-4 J6 AC Mains Power connector, A & B Size

3.7.1.3 Size C

Figure 3.19 Size C AC Mains Input Connection

- Fixed connector: 5 pins, male connector
- Mating connector, 5 pins, female, crimped supplied with the drive. (Molex 42816-0512)
- C size wiring: cable 8 AWG (8.4 mm²).
- PE Stud wiring: cable 6 AWG (13mm²)

Pos.	Name	Function
J6.3	L1	Phase "L1", three-phase voltage input 230/460Vac $\pm 10\%$
J6.2	L2	Phase "L2", ", three-phase voltage input 230/460Vac $\pm 10\%$
J6.1	L3	Phase "L3", ", three-phase voltage input 230/460Vac $\pm 10\%$
PE	PE	Protective Earth Stud on Chassis

Table 3.3-5 J6 AC Mains Power connector, C Size

3.7.1.4 Size D

Figure 3.20 Size D AC Mains Input Connection

- Fixed connector: 4 pole, screw terminal
- D size wiring: cable 6 AWG (13 mm²) for 50/140
- D size wiring: cable 4 AWG (21 mm^2) for 60/180
- PE Terminal wiring: cable 6 AWG (13 mm²) for 50/140
- PE Terminal wiring: cable 4 AWG (21 mm²) for 60/180
- Stripping Length 16mm
- Tightening Torque: 2-2.3Nm

Pos.	Name	Function
J9.3	PE	Protective Earth Screw Terminal
J9.4	L1	Phase "L1", three-phase voltage input 230/460Vac $\pm 10\%$
J9.5	L2	Phase "L2", ", three-phase voltage input 230/460Vac ±10%
J9.6	L3	Phase "L3", ", three-phase voltage input 230/460Vac ±10%

Table 3.3-6 J9 AC Mains Power connector, D Size

3.7.1.5 Size E

Figure 3.21 Size E AC Mains Input Connection

- Fixed connector: 4 pole, screw terminal
- E size wiring: cable 1 AWG (42 mm^2) for 310/300
- PE Terminal wiring: cable 1 AWG (42 mm²) for 100/300
- Stripping Length 16mm
- Tightening Torque: 2-2.3Nm

Pos.	Name	Function
J9.3	PE	Protective Earth Screw Terminal
J9.4	L1	Phase "L1", three-phase voltage input 230/460Vac $\pm 10\%$
J9.5	L2	Phase "L2", ", three-phase voltage input 230/460Vac $\pm 10\%$
J9.6	L3	Phase "L3", ", three-phase voltage input 230/460Vac $\pm 10\%$

3.7.2 Softstart & Power Cycling Frequency Limits

The DS2100 contains an internal soft-start function. The soft-start function limits the inrush current into the DS2100's D.C. Bus smoothing capacitors after the a.c. mains has been switched on.

If the frequency of power cycling becomes too high, then the power dissipation in the soft-start resistor can be excessive. In this case the softstart circuitry may become damaged.

CAUTION:- The internal softstart resistors are designed to allow an AC application of once every 60 seconds. If this rate is exceeded, then the internal softstart resistors may be damaged.

3.8 24V Backup Connection

The DS2100 is equipped with a 24V logic supply backup. This backup supply provides logic power to the drive when AC mains power is removed.

For the μ A size, this backup is mandatory for drive operation.

3.8.1 Size µA 24V Input Connection

Figure 3.22 Size μA 24V DC Input Connection

- Fixed connector: 12 pins, male connector
- Mating connector, 12 pins, female, supplied with the drive. Phoenix Combicon (Part # GMSTB 2.5/12-ST-7.62)
- μA size wiring: cable 14 AWG (2.1 mm²).
- Stripping Length 7mm
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.11	24V	+24V Logic Backup Supply
J6.12	0V	Logic Supply Return (Tied Internally to PE)

Table 3.3-7 J6 24V Logic Power connector, µA Size

3.8.2 Size A,B,C, D & E 24V Input Connection

Figure 3.23 Size A,B, C, D & E 24V DC Input Connection

- Fixed connector: 2 pins, male connector
- Mating connector, 2 pins, female, supplied with the drive. Wago (Part # 231-102/026-000)
- A,B,C & D size wiring: cable 14 AWG (2.1 mm^2).
- Stripping Length 8mm

Pos.	Name	Function
J8.1	24V	+24V Logic Backup Supply
J8.2	0V	Logic Supply Return

Table 3.3-8 J8 24V Logic Power connector, A,B,C & D Size

3.8.3 Auxiliary 24V Fan connection (Size E)

Figure 3.24 Size E auxiliary 24V fan supply

- Fixed connector: 2 pole, screw terminal
- Cable 14 AWG (2.1 mm^2)
- Stripping 9mm
- Torque 0.7Nm

3.9 Paralleling DS2100 Units through the D.C. Bus

DS2100 units can be paralleled via the D.C. Bus, in order to share regeneration power.

To comply with the EMC Directive, the DC Bus cable must be shielded and the shield must be connected to the housing with a 360° connection at both ends.

CAUTION – To connect drives through the DC bus, please contact Moog application engineering for advice.

3.9.1 <u>µA Size DC Bus Inter-connection</u>

Figure 3.25 Size µA DC Bus Inter-connection

- Fixed connector: 12 pins, male connector
 - Mating connector, 12 pins, female, supplied with the drive. Phoenix Combicon (Part # GMSTB 2.5/12-ST-7.62)
- μ A size wiring: cable 14 AWG (2.1 mm²). Wire stripping: 7 mm.
- PE Stud wiring: cable 6 AWG (13mm²)
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.1	DC-	DC Bus (-)
J6.2	DC+	DC Bus (+)

Table 3.3-9 J6, DC Bus connector, μA Size

3.9.2 A & B Size DC Bus Inter-connection

Figure 3.26 Size A & B DC Bus Inter-connection

- Fixed connector: 10 pins, male connector
- Mating connector, 10 pins, female, supplied with the drive. Phoenix Contact (Part # PC4 HV/10-ST-7.62)
- A size wiring: cable 14AWG (2.1 mm²). Wire stripping: 7 mm
- B size wiring: cable 14AWG (2.1 mm²). Wire stripping: 7 mm
- PE Stud wiring: cable 6 AWG (13mm²)
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.1	DC-	DC Bus (-)
J6.2	DC+	DC Bus (+)

Table 3.3-10 J6, DC Bus connector, A,B Size

3.9.3 C Size DC Bus Inter-connection

Figure 3.27 Size C DC Bus Inter-connection

J6

- Fixed connector: 5 pins, male connector
- Mating connector, 5 pins, female, crimped supplied with the drive. (Molex 42816-0512)
- C size wiring: cable 8 AWG (8.4 mm^2).
- PE Stud wiring: cable 6 AWG (13mm²)

J9

- Fixed connector: 2 pins, male connector
- Mating connector, 2 pins, female, crimped supplied with the drive. (Molex 42816-0212)
- C size wiring: cable 8 AWG (8.4 mm²).

Pos.	Name	Function
J9.2	DC+	DC Bus (+)
J9.1	DC-	DC Bus (-)
	TT 11	

Table 3.3-11 J9, DC Bus connector, C Size

3.9.4 D Size DC Bus Inter-connection

Figure 3.28 Size D DC Bus Inter-connection

J9

- Fixed connector: 2 pole, screw terminal
- D size wiring: cable 6 AWG (13 mm²) for 50/140
- D size wiring: cable 4 AWG (21mm²) for 60/180
- PE Terminal wiring: cable 6 AWG (13mm²) for 50/140
- PE Terminal wiring: cable 4 AWG (21 mm²) for 60/180
- Stripping Length 16mm
- Tightening Torque: 2-2.3Nm

Pos.	Name	Function
J9.11	DC+	DC Bus (+)
J9.12	DC-	DC Bus (-)

Table 3.3-12 J9, DC Bus connector, D Size

3.9.5 E Size DC Bus Inter-connection

Figure 3.29 Size D DC Bus Inter-connection

J9

- Fixed connector: 2 pole, screw terminal
- E size wiring: cable 1 AWG (42 mm²)
- PE Terminal wiring: cable 1 AWG (42 mm²)
- Stripping Length: 24mm
- Tightening Torque: 8Nm

Pos.	Name	Function
J9.13	DC+	DC Bus (+)
J9.14	DC-	DC Bus (-)

Table 3-13 J9, DC Bus connector, E Size

3.10 Internal/External Regeneration (Regen) Resistors – Configurations

Regeneration resistors can be fitted to all DS2100 servo-drives. All external Regen resistors should be mounted to allow adequate heat dissipation and such that heat from the Regen resistor is not directed to air intakes of other equipment. The μ A size DS2100 is the only size with internal regen. All other drive sizes use external regen only.

WARNING - External regen resistors are connected to the DS2100 D.C. Bus voltage that can reach 800 V d.c. Exposed metallic mounting parts of external regen resistors must be connected to protective earth and the electrically conducting parts mechanically shielded for safety. High voltage warning stickers are also recommended.

DS2100 Regeneration Resistor Options						
Model (Size)	Internal Regen			External Regen		
	Resistance	Continuous	Peak Power	Resistance	Continuous	Peak Power
	(Ω)	Power (W)	$(@ 400V_{AC}) (kW)$	(Ω)	Power (W)	$(@ 400V_{AC}) (kW)$
G361-xx03 (µA)	120	50	4.8	120	50	4.8
G361-xx06 (µA)	120	100	4.8	120	100	4.8
G361-xx08 (A)				51	200	12.5
G361-xx14 (B)	Internal Regen is available only on the DS2100 μ A		33	250	19.4	
G361-xx20 (C)			12	370	53.3	
G361-xx25 (C)	Size.			12	370	53.3
G361-xx30 (C)				12	370	53.3
G361-xx50 (D)			10	750	64	
G361-xx60 (D)			10	750	64	
G361-xx1x (E)			3.9	1,000	146	

Table 3.3-14 Recommended Regeneration Resistors

3.10.1 µA Size Regeneration Resistor Connection

Figure 3.3.30 DS2100 Size µA External Regeneration Connections

- Fixed connector: 12 pins, male connector
- Mating connector, 12 pins, female, supplied with the drive. Phoenix Combicon (Part # GMSTB 2.5/12-ST-7.62)
- μ A size wiring: cable 14 AWG (2.1 mm²). Wire stripping: 7 mm.
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.2	DC+	DC Bus (+)
J6.3	RR	Regeneration Resistor

Table 3.3-15 J6, Regeneration Resistor connector, µA Size

3.10.2 A, B Size Regeneration Resistor connection

Figure 3.3.31 DS2100 Size A,B External Regeneration Connections

- Fixed connector: 10 pins, male connector
- Mating connector, 10 pins, female, supplied with the drive. Phoenix Contact (Part # PC4 HV/10-ST-7.62)
- A size wiring: cable 14AWG (2.1 mm²). Wire stripping: 7 mm
- B size wiring: cable 14AWG (2.1 mm²). Wire stripping: 7 mm
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.2	DC+	DC Bus (+)
J6.3	RR	Regeneration Resistor

Table 3.3-16 J6, Regeneration Resistor connector, A,B Size

3.10.3 C Size Regeneration Resistor connection

Figure 3.3.32 DS2100 Size C External Regeneration Connections

- Fixed connector: 5 pins, male connector
- Mating connector, 5 pins, female, crimped supplied with the drive. (Molex 42816-0512)
- C size wiring: cable 8 AWG (8.4 mm²).

Pos.	Name	Function
J6.4	DC+(RR)	DC Bus (+)
J6.5	RR	Regeneration Resistor

Table 3.3-17 J6, Regeneration Resistor connector, C Size

3.10.4 D Size Regeneration Resistor connection

Figure 3.3.33 DS2100 Size D External Regeneration Connections

- J9
- Fixed connector: 2 pole, screw terminal
- D size wiring: cable 6 AWG (13 mm²) for 50/140
- D size wiring: cable 4 AWG (21mm²) for 60/180
- Stripping Length 16mm
- Tightening Torque: 2-2.3Nm

Pos.	Name	Function
J9.1	RR	Regeneration Resistor
J9.2	DC+(RR)	DC Bus (+)

Table 3.3-18 J9, Regeneration Resistor connector, D Size

3.10.5 E Size Regeneration Resistor connection

Figure 3.3.34 DS2100 Size E External Regeneration Connections

J9

- Fixed connector: 2 pole, screw terminal
- E size wiring: cable 2 AWG (34 mm²⁾
- Stripping Length 19mm
- Tightening Torque: 4Nm

Pos.	Name	Function
J9.3	RR	Regeneration Resistor
J9.4	DC+(RR)	DC Bus (+)

Table 3.3-19 J9, Regeneration Resistor connector, E Size

WARNING - When performing any changes to the regen resistor configuration, a.c. input power must be removed from the DS2100. Wait at least 5 minutes for the μ A sizes (6 minutes for the A-E sizes) upon removal of all power, to allow for D.C. Bus capacitors to discharge.

3.11 Motors - Installation

Motors should be sized by qualified personnel. Improper sizing will directly affect performance and reliability.

Motor performance data for Moog motors is shown in separate data sheets. Contact Moog Applications Engineering for detailed motor technical information and application sizing, etc.

Standard motors should not be mounted directly onto a gearbox with the shaft inside the lubrication chamber. Motors may be ordered with an optional shaft seal for these applications. When the motor is mounted, the lubricant level within the gearbox must be below the shaft seal of the motor in order to avoid long term seepage and motor failure.

3.11.1 Assembling Motor Resolver and Power Cables

Use of the made-up cable sets is recommended for connecting the MOOG brushless servomotors. These cable sets are available in standardized lengths.

If MOOG cables are not used, the values specified below with regard to the cable make-up must be maintained **in all cases**.

-

Contact your local Moog sales office or authorised distributor for selection of pre-made motor cables.

The following are listed for convenience:-

Europe and Asia	North America	MOOG Italiana S.r.l.
MOOG GmbH	MOOG.INC	Electric Division
Hanns-Klemm-Strasse 28	Jamison Road	Via Avossa 94
71034 Boeblingen	East Aurora, NY 14052	16015 Casella (Gevova)
GERMANY	USA	Italy
phone: +0049 - 7031 - 622 -0	phone: +001 - 716 - 652 - 2000	phone: +0039 - 010 - 96711
fax: +0049 - 7031 - 622 - 100	fax: +001 - 716 - 687 - 4870	fax: +0039 - 010 - 9671280

3.11.2 Motor Power Cable

Wire the motor power connector in accordance with Figure 3.3.35 to Figure 3.3.42.

Use wire sizes based on the motor's continuous stall current (r m s) and wire length requirements.

Wiring must be in accordance with standard EN 60204-1 (See Section 2 of this Users Manual.)

For proper drive commutation of motors, it is required that the motor phase conductors, Phase U, Phase V, and Phase W be wired exactly.

Figure 3.3.35 DS2100 µA Motor Power Connection

- Fixed connector: 12 pins, male connector
- Mating connector, 12 pins, female, supplied with the drive. Phoenix Combicon (Part # GMSTB 2.5/12-ST-7.62)
- μ A size wiring: cable 14 AWG (2.1 mm²). Wire stripping: 7 mm.
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.7	PE	Motor Protective Earth
J6.8	W	Motor Phase W
J6.9	V	Motor Phase V
J6.10	U	Motor Phase U

Table 3.3-20 J6, Motor connector, μA Size

3.11.2.2 Size A & B

Figure 3.3.36 DS2100 A & B Motor Power Connection

- Fixed connector: 10 pins, male connector
- Mating connector, 10 pins, female, supplied with the drive. Phoenix Contact (Part # PC4 HV/10-ST-7.62)
- A size wiring: cable 14AWG (2.1 mm²). Wire stripping: 7 mm
- B size wiring: cable 12AWG (3.3 mm²). Wire stripping: 7 mm
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.7	GND	Motor Protective Earth
J6.8	W	Motor Phase W
J6.9	V	Motor Phase V
J6.10	U	Motor Phase U

Table 3.3-21 J6, Motor connector, A & B Size

Figure 3.3.37 DS2100 C Motor Power Connection

- Fixed connector: 4 pins, male connector
- Mating connector, $\hat{4}$ pins, female, crimped supplied with the drive. (Molex 42816-0412)
- C size wiring: cable 8 AWG (8.4 mm²).

Pos.	Name	Function
J7.4	PE	Motor Protective Earth
J7.3	W	Motor Phase W
J7.2	V	Motor Phase V
J7.1	U	Motor Phase U

Table 3.3-22 J7, Motor connector, C Size

Figure 3.3.38 DS2100 D Motor Power Connection

J9

- Fixed connector: 4 pole, screw terminal
- D size wiring: cable 6 AWG (13 mm^2) for 50/140
- D size wiring: cable 4 AWG (21mm²) for 60/180
- Stripping Length 16mm
- Tightening Torque: 2-2.3Nm

Pos.	Name	Function
J9.10	PE	Motor Protective Earth
J9.9	W	Motor Phase W
J9.8	V	Motor Phase V
J9.7	U	Motor Phase U

Table 3.3-23 J9, Motor connector, D Size

Figure 3.3.39 DS2100 E Motor Power Connection

J9

- Fixed connector: 4 pole, screw terminal
- E size wiring: cable 1 AWG (42 mm²)
- Stripping Length 24mm
- Tightening Torque: 8Nm

Pos.	Name	Function
J9.9	PE	Motor Protective Earth
J9.12	W	Motor Phase W
J9.11	V	Motor Phase V
J9.10	U	Motor Phase U

Table 3.3-24 J9, Motor connector, E Size

3.11.3 Motor Brake Connection

The DS2100 provides a motor break relay at connector J2D (on Control Card Interface). The user supplies a 24Vd.c., Power Supply Unit for the brake connections. Details of the motor brake current requirements are available from the relevant motor datasheet.

Figure 3.3.40 Motor Brake Connector Location

Figure 3.3.41 Motor Brake Cabling

- Fixed connector: 4 pins, male connector
- Mating connector, 4 pins spring cage, female, supplied with the drive. Phoenix Contact (Part # FK-MCP 1.5/4-ST-3.81)
- Wiring: cable. 28-16AWG (0.14-1.5mm²)
- Wire stripping: 9 mm

Pos.	Name	Function
J2D.1	24V DC	Brake 24V Supply
J2D.2	+	Brake +
J2D.3	-	Brake -
J2D.4	24V RET	Brake 24V Supply Return

Table 3.3-25 J2D, DS2100 Brake connector

* The pins of the brake terminals at the motor cable connector end depend upon the cable size. Refer to Figure 3.3.42 for details.

Figure 3.3.42 Motor Power and Brake Connectors

DS2100	G4x2/3/4	G4x5	G4x6	PT00E 16-	97B3100R	97B3102R	PT00E 14-	97B3102R
				8-PC2	S 24-10P	36-SP	5 PC	S 24-22P
Ð	Ð	\oplus	Ð	D	D	D	D	D
U	2	U	U	А	А	А	А	А
V	4	V	V	В	В	В	В	В
W	1	W	W	С	С	С	С	С
Brake+	5	+	+	E	E	-	-	-
Brake-	6	-	-	F	F	-	-	-

3.11.4 Motor Resolver Connection

Wire the DS2100 resolver cable in accordance with Figure 3.3.44 and Table 3.3-27.

For CE compliance, shield should be attached on both sides of resolver cable.

i

Ť

NOTE:- Avoid running the resolver cable near other high power wiring, especially the motor power cable, if possible.

NOTE:- Cable Length should not exceed 30m (100 feet).

Figure 3.3.43 Motor Resolver Connector Location

- Fixed connector: 9 pin, female Sub-D connector
- Mating connector, 9 pin male Sub-D
- Wiring: cable. 28-18AWG (0.14-0.82mm²)

MOTOR RESOLVER CONNECTOR				
Pos	Signal Type	FAS T/ FAS K	FAS N/ FAS Y	G4xx (FASG)
J5.1	Cosφ (S2)	С	1	3
J5.2	$\overline{\operatorname{Cos}\varphi}(\mathrm{S4})$	Е	2	4
J5.9	V-Ref (R1)	D	10	7
J5.7	0V (R2)	В	7	8
J5.8	PTC\NTC	Ν	8	6
J5.6	PTC\NTC	А	9	5
J5.4	Sinφ (S1)	G	11	1
J5.5	$\overline{\operatorname{Sin} \varphi}$ (S3)	Н	12	2
J5.3	Shield	S	3	_

Table 3.3-27 Resolver connections to motor

Resolver Connector (J5)

"Motor Resolver port" for the "Motor Resolver Signals" and for the "Motor Integral NTC/PTC Temperature Control (PIN 6-8). This Auxiliary-connector is referred to Limited Voltage / Current circuits (rated max 5.5 Vdc $\pm 10\%$, 400 μ A).

Figure 3.3.44 DS2100 Resolver Cables

3.11.5 Motor Encoder Connection

The DS2100 encoder input supports a variety of encoders. These include Analogue, SSI, Hiperface and Endat. The connections to the drive for each of these encoder types are given in Table 3.3-28.

Figure 3.3.45 Motor Encoder Connector Location

- Fixed connector: 15 pin, female Sub-D connector
- Mating connector, 15pin male Sub-D
- Wiring: cable. 28-18AWG (0.14-0.82mm²)

	Encoder Type				
Pos	Analogue	SSI	Hiperface	Endat	
J4.1	Shield	Shield	Shield	Shield	
J4.2	- Sine	-	- Sine	- Channel B	
J4.3	- Cosine	-	- Cosine	- Channel A	
J4.4	Gnd Supply	Gnd Supply	Gnd Supply	Gnd Supply	
J4.5	-	- Clock	-	- Clock	
J4.6	- Channel Z (Zero)	- Data	RS485 -	- Data	
J4.7	-	-	-	-	
J4.8	NTC/PTC	NTC/PTC	NTC/PTC	NTC/PTC	
J4.9	+ Sine	-	+ Sine	+ Channel B	
J4.10	+ Cosine	-	+ Cosine	+ Channel A	
J4.11	+5 V +12V	+5 V +12V	+5 V +12V	+5 V +12V	
	Supply (150 mA	Supply (150 mA	Supply (150 mA	Supply (150 mA	
	max.)	max.)	max.)	max.)	
J4.12	- Fault	+ Clock	-	+ Clock	
J4.13	+ Channel Z (Zero)	+ Data	RS485 +	+ Data	
J4.14	Gnd Supply	Gnd Supply Gnd Supply Gnd		Gnd Supply	
J4.15	NTC/PTC	NTC/PTC NTC/PTC NTC		NTC/PTC	

Table 3.3-28 Encoder Cable Input Connections

- Encoder Connector (J4)

"Motor Encoder port" for the "Motor Encoder Channels" and for the "Motor Integral NTC/PTC Temperature Control (PIN 8-15). This Auxiliary-connector is referred to Limited Voltage / Current circuits (rated max 5.5 Vdc $\pm 10\%$, 400 μ A).

i

i

For CE compliance, shield should be attached on both sides of encoder cable.

NOTE:- Avoid running the encoder cable near other high power wiring, especially the motor power cable, if possible.

NOTE:- Cable Length should not exceed 30m (100 feet).

3.11.6 Motor Rotation Direction

The positive direction of rotation is clockwise, when the motor is viewed from the shaft end, as shown in the diagram below.

Figure 3.3.46 Rotational Convention for Mechanical Process Variables

i

NOTE:-. For operation with the encoder, positive rotation as defined here corresponds to Channel A **leading** Channel B.

3.12 DS2100 Control Input and Outputs

The following section contains a description of the control related Input/Output (I/O) available to the user. Functionality of this I/O is detailed later in this manual.

i

NOTE - An external 12Vd.c. to 32Vd.c. power source (user supplied) is required for the I/O functions. The amperage rating of this power source will depend on the number of I/O functions used. Supply currents can be calculated as a function of this number and the input and output impedances quoted below.

Figure 3.3.47 DS2100 I/O Connections

3.12.1 General Purpose Description of the Digital Inputs

The DS2100 provides 8 digital inputs on connector J2A.

- Fixed connector: 9 pins, male connector
- Mating connector, 9 pins spring cage, female, supplied with the drive. Phoenix Contact (Part # FK-MC 0.5/9-ST-2.5)
- Wiring: cable. 28-20AWG (0.14-0.5mm²)
- Wire stripping: 8 mm

Pos.	Name	Function	Function		
J2A.1	I1	Digital Input # 1	Drive Enable		
J2A.2	I2	Digital Input # 2	User Configurable		
J2A.3	I3	Digital Input # 3	User Configurable		
J2A.4	I4	Digital Input # 4	User Configurable		
J2A.5	15	Digital Input # 5	User Configurable		
J2A.6	I6	Digital Input # 6	User Configurable		
J2A.7	I7	Digital Input # 7	User Configurable		
J2A.8	18	Digital Input # 8	User Configurable		
J2A.9	RET	Digital Input Ground			

Table 3.3-29 J2A, DS2100 Digital Input connector

The following electrical description applies to all the digital inputs of the DS2100.

Figure 3.3.48 DS2100 Generic Digital Inputs
Note that:-

- Input Impedance > $5k \Omega$.
- Voltage Range is 12V to 32V from Digital-Input to the I_COMMON line. Inputs are protected for input voltages from -40V to +40V
 - Input voltages whose magnitude is less than 12V with respect to the I_COMMON line will not be guaranteed to be recognised as an **active** signal input.
 - Input voltages whose magnitude is more than 5V with respect to the I_COMMON line will not be guaranteed to be recognised as an **inactive** signal input
- All digital inputs are optically isolated for noise immunity purposes. All DS2100 digital inputs are isolated from high voltage circuitry internally
- **Current flowing** in the digital input implies the 'safer' of the corresponding active/inactive functions. For example, when current flows in the clockwise limit switch input, then the limit is NOT active.

3.12.2 General Purpose Description of the Digital Outputs

The DS2100 provides 4 digital outputs on connector J2B & J2C. Only the digital outputs on J2B are detailed here.

- Fixed connector: 5 pins, male connector
- Mating connector, 5 pins spring cage, female, supplied with the drive. Phoenix Contact (Part # FK-MC 0.5/5-ST-2.5)
- Wiring: cable. 28-20AWG (0.14-0.5mm²)
- Wire stripping: 8 mm

Pos.	Name	Function	
J2B.1	Ext 24V DC	+24V Digital Output Supply	
J2B.2	01	Digital Output #1	User Configurable
J2B.3	O2	Digital Output #2	User Configurable
J2B.4	03	Digital Output #3	User Configurable
J2B.5	Ext 24V Ret	Digital Output Return	

Table 3.3-30 J2B, DS2100 Digital Output connector

The following electrical description applies to all, except one, of the digital outputs of the DS2100. (One digital output, Drive Ready, uses a relay rather than an opto-coupler).

Figure 3.3.49 DS2100 Generic Digital Outputs

Note that:-

- Voltage Range is 6V to 32V from Digital-Output to the O_COMMON line. Digital outputs switch only DC voltages.
- **Output current** \geq 250 mA, off state leakage current \leq 100 μ A at 0 V.
- Short circuit protected, inductive load driving capability, reverse polarity protected. Protected for supply voltage range of -40 V to +40 V.
- All digital outputs are optically isolated for noise immunity purposes. All DS2100 digital outputs are isolated from high voltage circuitry.
- **Current flowing** in the digital output implies the function is active.

3.12.2.1 Drive Ready Relay

The DS2100 provides 1 relay output on connector J2C. This relay closes when the drive is ready and no faults are present.

- Fixed connector: 2 pins, male connector
- Mating connector, 2 pins spring cage, female, supplied with the drive. Phoenix Contact (Part # FK-MC 0.5/2-ST-2.5)
- Wiring: cable. 28-20AWG (0.14-0.5mm²)
- Wire stripping: 8 mm

Pos.	Name	Function	
J2C.1	Drive Ready 1	Drive ready relay contact pin 1	Drive Ready Relay Contact
J2C.2	Drive Ready 2	Drive ready relay contact pin 2	Drive Ready Relay Contact

Table 3.3-31 J2B, DS2100 Digital Output connector

The following electrical description applies to the Drive ready relay of the DS2100.

Figure 3.3.50 Drive Ready Relay Output

Note that:-

- Closed when drive ready and no faults.
- Max. voltage 36 V
- Max. contact current 100 mA

3.12.3 Power Sequencing on Startup

The timing of the digital inputs ENABLE and PWR_RDY must be considered carefully for proper power-on sequencing.

Figure 3.3.51 Power Sequencing control using Drive Ready Relay and ENABLE

WARNING - It is UNSAFE to use the Drive Ready output as a direct control for the ENABLE. The Drive Ready output will switch off when a fault occurs, and will switch on when the fault is cleared. This may result in an inadvertent enable of high power to the DS2100 high power amplifier, resulting in unexpected high voltage application or motion.

The System Motion Controller should examine the state of the Drive Ready relay output separately, and then enable the DS2100 high power amplifier if appropriate

3.13 Communications Interface Wiring and Configuration

The DS2100 provides one serial interface (RS232) for communication between the drive and the Windrive graphical user interface (GUI).

The drive also provides a CAN High speed (ISO11898-2) hardware-interface for higher bandwidth communications between one System Motion Controller and many DS2100's (which can handle motion commands between the System Motion Controller and DS2100's)

3.13.1 RS232 Serial Communications Interface

The pin assignment enables use of a 9-pin Sub-D cable with all signals connected straight through.

Figure 3.3.52 RS232 Connector Location

- Fixed connector: 9 pin, female Sub-D connector
- Mating connector, 9 pin male Sub-D
- Wiring: cable. 28-18AWG (0.14-0.82mm²)

Pos.	DS2100 Signal	Function	PC Signal
J1.1	-	connected to pin 4	DCD input
J1.2	TxD	Transmit Data	RxD input
J1.3	RxD	Receive Data	TxD output
J1.4	-	connected to pin 1 and 6	DTR output
J1.5	Gnd	Gnd	Gnd
J1.6	-	connected to pin 4	DSR input
J1.7	-	connected to pin 8	RTS output
J1.8	-	connected to pin 7	CTS input
J1.9	-	unused	RI input

Table 3.3-32 J1, DS2100 RS232 Serial Interface Connector

Figure 3.3.53 DS2100's J1 RS232 Wire Pin-out

The RS232 Cable shield should be connected to the metal body of the D-Type connector.

3.13.2 CAN Cable Wiring

The CAN-In and CAN-Out ports at J3A and J3B of the DS2100 provide the means to daisy-chain the CAN cabling between DS2100 units and system controller. The CAN interface is equipped with driver and receiver for 24V systems. These are optically isolated from the internal drive electronics for noise immunity. Internal supply of the isolated side of the CAN is provided. No user supplied voltage is required. Two daisy chained 9-way D-Sub connectors, one male, one female are also provided for ease of wiring.

Please refer to CAN Draft Standard 303, 'Cabling and Connector Pin Assignment' for further details of the CAN cabling requirements.

Figure 3.3.54 CAN Connector Location

- Fixed connector: 9 pin, male & female Sub-D connector
- Mating connector, 9 pin male & female Sub-D
- Wiring: cable. 28-18AWG (0.14-0.82mm²)

Pos (x=A,B)	Signal	Description
J3x.1	-	not connected
J3x.2	CAN_L	CAN_L bus line (dominant low)
J3x.3	CAN_GND	CAN Ground
J3x.4	-	not connected
J3x.5	CAN_SHLD	Chassis Ground
J3x.6	CAN_GND	CAN Ground
J3x.7	CAN_H	CAN_H bus line (dominant high)
J3x.8	-	not connected
J3x.9	-	Optional CAN external positive supply, not connected.

Table 5.5-55 CAN Connector T in Description	Table 3.3-33	CAN	Connector	Pin	Descriptio	n
---	--------------	-----	-----------	-----	------------	---

Note:-

- CAN lines must be terminated in a 1200hm resistance, between the positive and negative terminals (CAN-High and CAN-Low) at both ends of the CAN network for correct operation.
- All pins of J3A and J3B are wired straight through the connectors of the DS2100.

Figure 3.3.55 DS2100 CAN Wiring and Termination

Figure 3.3.56 CAN_L/CAN_H Connector (J3A and J3B) Wiring

3.14 Wiring Summary

3.14.1 <u>µA Size Power Stage</u>

- Fixed connector: 12 pins, male connector
- Mating connector, 12 pins, female, supplied with the drive. Phoenix Combicon (Part # GMSTB 2.5/12-ST-7.62)
- μ A size wiring: cable 14 AWG (2.1 mm²). Wire stripping: 7 mm.
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.1	DC-	DC Bus (-)
J6.2	DC+	DC Bus (+)
J6.3	RR	Regeneration Resistance
J6.4	L1	Phase "L1", three-phase voltage input 230/460Vac $\pm 10\%$
J6.5	L2	Phase "L2", ", three-phase voltage input 230/460Vac $\pm 10\%$
J6.6	L3	Phase "L3", ", three-phase voltage input 230/460Vac $\pm 10\%$
J6.7	PE	Motor Protective Earth
J6.8	W	Motor Phase W
J6.9	V	Motor Phase V
J6.10	U	Motor Phase U
J6.11	24V	+24V Logic Backup Supply
J6.12	0V	Logic Supply Return

- PE Stud wiring: cable 6 AWG (13mm²)

Pos.	Name	Function
PE	PE	Protective Earth Stud on Chassis

3.14.2 A & B Size Power Stage

- Fixed connector: 10 pins, male connector
- Mating connector, 10 pins, female, supplied with the drive. Phoenix Contact (Part # PC4 HV/10-ST-7.62)
- A size wiring: cable 14AWG (2.1 mm²). Wire stripping: 7 mm
- B size wiring: cable 12AWG (3.3 mm²). Wire stripping: 7 mm
- Tightening torque: 0.5Nm.

Pos.	Name	Function
J6.1	DC-	DC Bus (-)
J6.2	DC+	DC Bus (+)
J6.3	RR	Regeneration Resistance
J6.4	L1	Phase "L1", three-phase voltage input 230/460Vac ±10%
J6.5	L2	Phase "L2", ", three-phase voltage input 230/460Vac $\pm 10\%$
J6.6	L3	Phase "L3", ", three-phase voltage input 230/460Vac $\pm 10\%$
J6.7	PE	Motor Protective Earth
J6.8	W	Motor Phase W
J6.9	V	Motor Phase V
J6.10	U	Motor Phase U

- Fixed connector: 2 pins, male connector
- Mating connector, 2 pins, female, supplied with the drive. Wago (Part # 231-102/026-000)
- C & D size wiring: cable 14 AWG (2.1 mm^2).
- Stripping Length 8mm

Pos.	Name	Function
J8.1	24V	+24V Logic Backup Supply
J8.2	0V	Logic Supply Return

- PE Stud wiring: cable 6 AWG (13mm²)

Pos.	Name	Function
PE	PE	Protective Earth Stud on Chassis

3.14.3 C Size Power Stage

- Fixed connector: 5 pins, male connector
- Mating connector, 5 pins, female, crimped supplied with the drive. (Molex 42816-0512)
- C size wiring: cable $\hat{8}$ AWG (8.4 mm²).

Pos.	Name	Function
J6.1	L3	Phase "L3", ", three-phase voltage input 230/460Vac $\pm 10\%$
J6.2	L2	Phase "L2", ", three-phase voltage input 230/460Vac $\pm 10\%$
J6.3	L1	Phase "L1", three-phase voltage input 230/460Vac ±10%
J6.4	DC+(RR)	DC Bus (+) (Regeneration Resistor connection)
J6.5	RR	Regeneration Resistor

- Fixed connector: 4 pins, male connector
- Mating connector, $\hat{4}$ pins, female, crimped supplied with the drive. (Molex 42816-0412)
- C size wiring: cable 8 AWG (8.4 mm²).

Pos.	Name	Function
J7.1	U	Motor Phase U
J7.2	V	Motor Phase V
J7.3	W	Motor Phase W
J7.4	PE	Motor Protective Earth

- Fixed connector: 2 pins, male connector
- Mating connector, 2 pins, female, supplied with the drive. Wago (Part # 231-102/026-000)
- C & D size wiring: cable 14 AWG (2.1 mm^2) .
- Stripping Length 8mm

Pos.	Name	Function
J8.1	24V	+24V Logic Backup Supply
J8.2	0V	Logic Supply Return

- Fixed connector: 2 pins, male connector

- Mating connector, 2 pins, female, crimped supplied with the drive. (Molex 42816-0212)
- C size wiring: cable 8 AWG (8.4 mm²).

0.01				
	Pos.	Name	Function	
	J9.2	DC+	DC Bus (+)	
	J9.1	DC-	DC Bus (-)	
PE	Stud wiring: cab	ele 6 AWG (13mm ²)		
	Pos.	Name	Function	
	PE	PE	Protective Earth Stud on Chassis	

3.14.4 D Size Power Stage

- Fixed connector: 12 pole, screw terminal
- D size wiring: cable 6 AWG (13 mm^2) for 50/140
- D size wiring: cable 4 AWG (21 mm^2) for 60/180
- PE Terminal wiring: cable 6 AWG (13 mm²) for 50/140
- PE Terminal wiring: cable 4 AWG (21 mm^2) for 60/180
- Stripping Length 16mm
- Tightening Torque: 2-2.3Nm

Pos.	Name	Function
J9.1	RR	Regeneration Resistance
J9.2	DC+(RR)	DC Bus (+)
J9.3	PE	Protective Earth Screw Terminal
J9.4	L1	Phase "L1", three-phase voltage input 230/460Vac $\pm 10\%$
J9.5	L2	Phase "L2", ", three-phase voltage input 230/460Vac $\pm 10\%$
J9.6	L3	Phase "L3", ", three-phase voltage input 230/460Vac ±10%
J9.7	U	Motor Phase U
J9.8	V	Motor Phase V
J9.9	W	Motor Phase W
J9.10	PE	Motor Protective Earth
J9.11	DC+	DC Bus (+)
J9.12	DC-	DC Bus (-)

- Fixed connector: 2 pins, male connector

- Mating connector, 2 pins, female, supplied with the drive. Wago (Part # 231-102/026-000)
- D size wiring: cable 14 AWG (2.1 mm²).
- Stripping Length 8mm

Pos.	Name	Function
J8.1	24V	+24V Logic Backup Supply
J8.2	0V	Logic Supply Return

3.14.5 E Size Power Stage

- Fixed connector: 14 pole, screw terminal
- Pos 1,2: Cable 14 AWG (2.1 mm²), Stripping 9mm, Torque 0.7Nm
- Pos 3,4: Cable 2 AWG (34 mm²), Stripping 19mm, Torque 4Nm
- Pos 5-14: Cable 1 AWG (42 mm²), Stripping 24mm, Torque 8Nm

Pos.	Name	Function
J9.1	24V fans	Voltage inputs 24Vdc fans ±10%, 2A
J9.2	0V fans	
J9.3	RR	Regeneration Resistance
J9.4	DC+(RR)	DC Bus (+)
J9.5	PE	Protective Earth Screw Terminal
J9.6	L1	Phase "L1", three-phase voltage input 230/460Vac $\pm 10\%$
J9.7	L2	Phase "L2", ", three-phase voltage input 230/460Vac $\pm 10\%$
J9.8	L3	Phase "L3", ", three-phase voltage input 230/460Vac $\pm 10\%$
J9.9	PE	Motor Protective Earth
J9.10	U	Motor Phase U
J9.11	V	Motor Phase V
J9.12	W	Motor Phase W
J9.13	DC+	DC Bus (+)
J9.14	DC-	DC Bus (-)

- Fixed connector: 2 pins, male connector
- Mating connector, 2 pins, female, supplied with the drive. Wago (Part # 231-102/026-000)
- E size wiring: cable 14 AWG (2.1 mm²).
- Stripping Length 8mm

Pos.	Name	Function
J8.1	24V	+24V Logic Backup Supply
J8.2	0V	Logic Supply Return

3.14.6 Control Card

3.14.6.1 RS232

- Fixed connector: 9 pin, female Sub-D connector
- Mating connector, 9 pin male Sub-D
- Wiring: cable. 28-18AWG (0.14-0.82mm²)

Pos.	Name	Function	PC Signal
J1.1	-	connected to pin 4	DCD input
J1.2	TxD	Transmit Data	RxD input
J1.3	RxD	Receive Data	TxD output
J1.4	-	connected to pin 1 and 6	DTR output
J1.5	Gnd	Gnd	Gnd
J1.6	-	connected to pin 4	DSR input
J1.7	-	connected to pin 8	RTS output
J1.8	-	connected to pin 7	CTS input
J1.9	-	unused	RI input

3.14.6.2 Digital Inputs

- Fixed connector: 9 pins, male connector
- Mating connector, 9 pins spring cage, female, supplied with the drive. Phoenix Contact (Part # FK-MC 0.5/9-ST- 2.5)
- Wiring: cable. 28-20AWG (0.14-0.5mm²)
- Wire stripping: 8 mm

Pos.	Name	Function	
J2A.1	I1	Digital Input # 1	Drive Enable
J2A.2	I2	Digital Input # 2	User Configurable
J2A.3	I3	Digital Input # 3	User Configurable
J2A.4	I4	Digital Input # 4	User Configurable
J2A.5	I5	Digital Input # 5	User Configurable
J2A.6	I6	Digital Input # 6	User Configurable
J2A.7	I7	Digital Input # 7	User Configurable
J2A.8	18	Digital Input # 8	User Configurable
J2A.9	RET	Digital Input Ground	

3.14.6.3 Digital Outputs

- Fixed connector: 5 pins, male connector
- Mating connector, 5 pins spring cage, female, supplied with the drive. Phoenix Contact (Part # FK-MC 0.5/5-ST-2.5)
- Wiring: cable. 28-20AWG (0.14-0.5mm²)
- Wire stripping: 8 mm

Pos.	Name	Function	
J2B.1	Ext 24V DC	+24V Digital Output Supply	
J2B.2	01	Digital Output #1	User Configurable
J2B.3	O2	Digital Output #2	User Configurable
J2B.4	O3	Digital Output #3	User Configurable
J2B.5	Ext 24V Ret	Digital Output Return	

3.14.6.4 Drive Ready

- Fixed connector: 2 pins, male connector
- Mating connector, 2 pins spring cage, female, supplied with the drive. Phoenix Contact (Part # FK-MC 0.5/2-ST-2.5)
- Wiring: cable. 28-20AWG (0.14-0.5mm²)
- Wire stripping: 8 mm

Pos.	Name	Function	
J2C.1	Drive Ready 1	Drive ready relay contact pin 1	Drive Ready Relay Contact
J2C.2	Drive Ready 2	Drive ready relay contact pin 1	Drive Ready Relay Contact

3.14.6.5 Motor Brake

- Fixed connector: 4 pins, male connector
- Mating connector, 4 pins spring cage, female, supplied with the drive. Phoenix Contact (Part # FK-MCP 1.5/4-ST-3.81)
- Wiring: cable. 28-16AWG (0.14-1.5mm²)
- Wire stripping: 9 mm

Pos.	Name	Function
J2D.1	24V DC	Brake 24V Supply
J2D.2	+	Brake +
J2D.3	-	Brake -
J2D.4	24V RET	Brake 24V Supply Return

3.14.6.6 CAN

- Fixed connector: 9 pin male & female, Sub-D connector
- Mating connector, 9 pin male & female Sub-D
- Wiring: cable. 28-18AWG (0.14-0.82mm²)

Pos (x=A,B)	Signal	Description
J3x.1	-	not connected
J3x.2	CAN_L	CAN_L bus line (dominant low)
J3x.3	CAN_GND	CAN Ground
J3x.4	-	not connected
J3x.5	CAN_SHLD	Chassis Ground
J3x.6	CAN_GND	CAN Ground
J3x.7	CAN_H	CAN_H bus line (dominant high)
J3x.8	-	not connected
J3x.9	-	Optional CAN external positive supply, not connected.

3.14.6.7 Encoder

- Fixed connector: 15 pin, female Sub-D connector
- Mating connector, 15pin male Sub-D
- Wiring: cable. 28-18AWG (0.14-0.82mm²)

15-Pin Sub-D Connector Plug (male) on cable

DS2100 Cable End J4

	Encoder Type						
Pos	Analogue	SSI	Hiperface	Endat			
J4.1	Shield	Shield	Shield	Shield			
J4.2	- Sine	-	- Sine	- Channel B			
J4.3	- Cosine	-	- Cosine	- Channel A			
J4.4	Gnd Supply	Gnd Supply	Gnd Supply	Gnd Supply			
J4.5	-	- Clock	-	- Clock			
J4.6	- Channel Z (Zero)	- Data	RS485 -	- Data			
J4.7	-	-	-	-			
J4.8	NTC/PTC	NTC/PTC	NTC/PTC	NTC/PTC			
J4.9	+ Sine	-	+ Sine	+ Channel B			
J4.10	+ Cosine	-	+ Cosine	+ Channel A			
J4.11	+5 V +12V	+5 V +12V	+5 V +12V	+5 V +12V			
	Supply (150 mA	Supply (150 mA	Supply (150 mA	Supply (150 mA			
	max.)	max.)	max.)	max.)			
J4.12	- Fault	+ Clock	-	+ Clock			
J4.13	+ Channel Z (Zero)	+ Data	RS485 +	+ Data			
J4.14	Gnd Supply	Gnd Supply	Gnd Supply	Gnd Supply			
J4.15	NTC/PTC	NTC/PTC	NTC/PTC	NTC/PTC			

3.14.6.8 Resolver

- Fixed connector: 9 pin, female Sub-D connector
- Mating connector, 9 pin male Sub-D
- Wiring: cable. 28-18AWG (0.14-0.82mm²)

	MOTOR RESOLVER CONNECTOR							
Pos	Signal Type	FAS T/ FAS K	FAS N/ FAS Y	G4xx (FASG)				
J5.1	Cosφ (S2)	С	1	3				
J5.2	$\overline{\operatorname{Cos} \varphi}$ (S4)	E	2	4				
J5.9	V-Ref (R1)	D	10	7				
J5.7	0V (R2)	В	7	8				
J5.8	PTC\NTC	N	8	6				
J5.6	PTC\NTC	A	9	5				
J5.4	Sinφ (S1)	G	11	1				
J5.5	$\overline{\operatorname{Sin} \varphi}$ (S3)	H	12	2				
J5.3	Shield	S	3	-				

SECTION 4: GETTING STARTED

SECTION 4: GETTING STARTED

TABLE OF CONTENTS

SECTIO	N 4: Getting Started	4-1
4.1	Introduction	4-3
4.2	Initial Preparation	4-3
4.3	Power Supply	4-3
4.4	Installing Windrive	4-4
4.5	Controller Access	4-5
4.6	Motor Selection	4-6
4.7	Regen Resistor Configuration	4-8
4.8	Acceleration Limits	4-10
4.9	Parameter Utilities	4-11
4.10	Status & Faults	4-12
4.11	High Power Application	4-13
4.12	Autophasing	4-14
4.13	Torque Mode Enable	4-15
4.14	Velocity Mode Enable	4-16
4.15	Oscilloscope	4-17
4.15	5.1 Oscilloscope Set-up	4-17
4.15	5.2 Setting the Velocity Loop Gains	4-18
4.15	5.3 Step Response With Velocity p-gain = 0.01 & i-gain = 0.0	4-19
4.15	5.4 Step Response With Velocity p-gain = 0.075 & i-gain = 0.0	
4.15	5.5 Step Response With Velocity p-gain = 0.075 & i-gain = 5.0	
4.16	Power-Down Sequence	4-22
	-	

TABLE OF FIGURES

Figure 4.4.1Main Window	4-4
Figure 4.3 Access level Password	4-5
Figure 4.5 Downloading Motor Parameters	4-6
Figure 4.7 Parameter Database	4-7
Figure 4.8 Regeneration Parameters	4-8
Figure 4.10 External Regen Parameters	
Figure 4.12 Acceleration Limits	4-10
Figure 4.14 Parameter Utilities	4-11
Figure 4.16 Clearing Faults	
Figure 4.18 DC Bus Voltages	
Figure 4.21 Commutation Parameters	4-14
Figure 4.23 Torque Mode Drive Enable	4-15
Figure 4.25 Velocity Mode Drive Enable	4-16
Figure 4.27 Oscilloscope	4-17
Figure 4.29 Velocity Loop Gains	4-18
Figure 4.31 Step Response With Velocity p-gain = 0.01 & i-gain = 0.0	4-19
Figure 4.33 Step Response With Velocity p-gain = 0.075 & i-gain = 0.0	
Figure 4.35 Step Response With Velocity p-gain = 0.075 & i-gain = 5	

4.1 Introduction

The getting started guide will provide you with the information needed to get a DS2100 configured and operational. The guide will show the typical steps required to operate a DS2100 controller using the Windrive Software.

Before starting this section the user should become familiar with Sections 1 - Sections 3 of this manual, in particular safety notices and hazard warnings.

After completing this guide the user will be able to perform basic motor operations using a DS2100 in both Torque and Velocity Mode.

Note: The example in this chapter demonstrates how to set up and configure a motor with **resolver** feedback.

4.2 Initial Preparation

Install the drive as per *Section 3* with regards to the safety notices indicated in section 2. As a minimum the following items are required before getting started:

- A DS2100 Controller.
- A PC Running Windows 98, Windows ME, Windows NT 4.0 (Service Pack 6 or later), Windows 2000, Windows XP with at least one RS232 serial port
- 24Vd.c and/or 230V/400Va.c
- Motor with resolver feedback
- Drive Enable Input

4.3 **Power Supply**

The DS2100 requires a control power source to supply backup-power for the control electronics. This control-backup power is useful where the user requires that the DS2100 does not lose absolute position data or status information when AC mains power is removed from the DS2100.

For the G361-x003 &-x006 a $24V_{dc}$ logic backup supply is mandatory for the drive to operate. No internal high voltage backup is provided on the smaller μA models.

4.4 Installing Windrive

WinDrive should be installed by running setup.exe from the File Manager or from the Program Manager. The installation program will take the user through all the necessary installation steps. Any necessary folders to launch WinDrive will automatically be created in the Start menu.

For a more detailed account of setting up and installing the Windrive software refer to the "Readme" file which accompanies the GUI software.

From the Windows Start menu, select the "windrive" executable jar file to launch the application. The Launcher dialog box is displayed after starting WinDrive. It displays the available configurations available for the particular release of WinDrive.

To determine which version is required look at the model number label on the drive:

For a drive named G361-xxxxA-00-000 or G361-xxxxA-01-000 select DS2100v0.1.

For a drive named G361-xxxxA-02-000 select DS2100v0.2.

Click "Open".

💋 Moog WinDrive 3.02 Launcher	<u> </u>
Select Configuration	
D52100 v0.1	
D52100 v0.2	
,	
	Open

Figure 4.4.1Main Window

SECTION 4: GETTING STARTED

4.5 Controller Access

At this stage the Windrive software should be able to communicate with the DS2100 controller and the Status bar in the upper right hand corner should be green and read "*Read Successful (Controller ACK)*"

If the status bar is red and reads "*Serial Port Timeout Error*", ensure the +24V Backup power is applied and check all serial connections and Port settings.

The user does not need to input any password to set up and configure a drive and motor combination. Controller Access is for use by Moog Application Engineering and Moog Design Engineering.

The WinDrive Software should now be functional and DS2100 Controller ready to be configured with the users particular parameters.

4.6 Motor Selection

The user may select to download the appropriate motor settings using one of the supplied Moog Motor libraries

- Moog Standard library "Motor Setup \rightarrow Moog Standard Motors (Full Database)"
- Moog Non-standard Motor Library "Motor Setup \rightarrow Moog Nonstandard Motors".

The motor may be selected by a choice of model (Gxxx-xxx) or electrical type (GxLxx) from the scrollable motor list. The nameplate on the motor should be checked for either the model or electrical type and the corresponding motor selected from either of the lists provided.

A search bar is also provided to help identify the corresponding motor in the list.

- Double click on the appropriate motor name to display a list of the current motor parameters.
- Left Click "Download Parameters to Controller".
- Select "*Yes*" at the prompt
- Select "*Close*" to close the list of motor parameters.

Moog WinDrive 3.02 - D52100 Configuration	1	_							_
vigator Driver View Help									
	6								
							Status: R	ead Successful (C	ontroller ACK)
S2100 : 0	Moog Standard	Motors : 0							
DS2100 RS232 Interface Mode Software ID Controller Access Level Controller Access Level	Create Entry	Delete E	intry	Search Mot	or: G3L05			1	
Control with Step Function Generator	MotorName	lo		lmax	Nn	Kt	Rtt	Ltt	Pm
Control with Sine Function Generator	EAC V 440 E	0.02	201	-	2000	1.210	0.0	4.0	
E 🛄 CANopen	FAS-1-112-F	9.43	49.5	2	3000	2.250	0.5	4.0	19
d- 🛄 Drive Setup	FAS.V.132.F	13.79	631	Motor					×
I Dia Motor Setup	FAS-Y-132-V	13.79	49	Adda a bloom			0.01.05		*
Motor Parameters	EAW-3-P1-038	12.57	54 -	Motor Nam	e		G3LUS		
Encoder Parameters	FAW-3-P2-030	19.83	72	No. of Moto	or Poles		8		
Commutation Parameters	FAW-3-P2-036	19.83	72:	may Lama	4		4.6		
Moog Standard Motors	FAW-3-P3-030	29.25	115	and terms	1		4.0		
Moog Nonstandard Motors	FAW-3-P3-034	27.11	98.	In (Arms)			1.2		
Status and Faults	FAW-3-P4-030	34.37	118	Nominal Ma	x Speed (rom)		8800		
Parameter Onlines	FAW-3-P4-032	31.15	107						
Osciloscope	FAW-3-P5-030	33.39	136	Ke [V/rad/s	1		0.33		
Geologicope Firmware Lloorade	FAVV-3-P6-027	38.38	128	Rtt [Ohm]			15.2		
Parameter Database Unicad	FAW-3-P6-030	60.67	221						
Configuration Upload/Download	FAW-3-P8-023	37.87	154	Lq [mH]			111.100000		
Unit Selection	FAW-3-V4-030	42.43	81.1	Ld [mH]			10.700000		
Fault History	FAW-3-V6-031	56.99	105	d avia aur		n anin (1//A)	61.00		
	G2L05	0.65	1.9	u-duis curr	ent compensator	p-gain (viA)	151.03		
	G2L10	1.2	3.7	d-axis curr	ent compensator	i-gain (V/A/Tsamp)	8.39		
	G2L20	2.15	6.4	a auto auto			20.04		*
	G2L40	2.85	8.3		Source Boxone	otoro	1	Cours Dourseland	
	6332-400	1.15	2.3		save Param	eters		Save Parameter	s As
	6332-600	2	4	Dow	micad Parameter	s To Controller		Close	
	6333-400	22	0						
	6334-400	4.5	9.0		PICalcula	ator			
	6334-600	7	14		13900	0.76	15	51	12
	631.05	1.6	1.0		8800	0.4	15.2	19.8	8

Figure 4.5 Downloading Motor Parameters

SECTION 4: GETTING STARTED

Open the parameter database $DS2100 \rightarrow Parameter Database$. Click on the "Name" column header and all parameters will be sorted alphabetically.

- Ensure the commutation feedback parameter "comfbk" is set to 1 (resolver feedback),
 - $DS2100 \rightarrow Parameter \ Database \rightarrow comfbk$
- Ensure the Position feedback parameter "posfbk" is set to 1 (resolver feedback),,
 DS2100 → Parameter Database → posfbk

Moog WinDrive 3.02 - DS2100 v0.2 Configuration File Navigator Driver View Help	1				×
	Status: Read Su	ccessful (Controller ACK)		
D52100 0.2 : 0	Moog Standard Mo	tors: Full Database : 0	Parameter Database :	:0]	
- D52100	Name	Number	Туре	Comment	1
DS2100	calkmin	1284	FLOAT	current loop foldback minimum	41
Software ID	canacc	12003	UNSIGN8	can access rights	Ĩ
Controller Access Level	canbdr	12007	UNSIGN32	can bus bitrate	1
Controller Access Level	canbof	12121	UNSIGN32	can bus-off recovery time (ms)	
Controller Hone Parler	cancfg	12114	UNSIGN8	can configuration: bit0=bootup message, bit2=sync producer, bit3	
Control with Step Eupction Generator	cancmd	12004	UNSIGN32	can system command	41
Control with Size Eulection Generator	canctl	12006	UNSIGN8	can controller number	
	candat	12005	UNSIGN32	can system data	
Enviro Setup	candef	12002	UNSIGN8	can default access rights	1
Motor Setup	canena	12000	UNSIGN8	can enable	
Motor Decap	canpwd	12001	UNSIGN32	can password	
Pecolver Parameters	cansta	12115	UNSIGN8	can state: bit0=power on, bit1=lss init, bit2=reset appl., bit3=res	
Encoder Parameters	cantst	12108	SIGN32	test parameter	
Consultation Devendence	cardid	1543	UNSIGN8	card id status	48
Maga Standard Materici Full Database	clncob	12033	UNSIGN32	sdo client cob-id	
Moog Standard Motors: Full Database	cmd	1033	SIGN32	control loop command	
Moog Nonstandard Motors	cmdinvena	1123	SIGN16	command invert enable	
Application Specific Setups	comadj	1038	UNSIGN8	commutation offset adjustment	
🗄 🔂 Devenation Utilities	comfbk	1035	UNSIGN8	commutation feedback: 0-fixed, 1-resolver, 2-encoder	41
Parameter Ounces	comofs	1036	SIGN16	commutation offset	
Parameter Database	conicon	1126	FLOAT	controller continuous rms current	
	conimax	1092	FLOAT	current controller max	1
Firmware Upgrade Development Upland	crdideena	1541	UNSIGN16	bridge ID enable	
Parameter Database Upload Dama Mada	ctl402	1650	UNSIGN16	ds402 control word	
Demo Mode	ctlwrd	1000	UNSIGN16	state machine requested state	
Configuration upload/Download	ctlwrddr1	1009	UNSIGN16	drive requested state	
	d	1012	UNSIGN8	disable shortcut	
Unit On Request	datfld	10003	FIELD	database field number unit request	íl.
Eault History					4

Figure 4.7 Parameter Database

4.7 Regen Resistor Configuration

Only the μ A size DS2100 is equipped with an internal regeneration resistor. The larger sizes (A-D) require an external resistor to be attached. The recommended regeneration resistors are detailed in *Section 5.3.5*.

The Regen-on/ Regen-off voltages should be set in accordance with the DC Bus voltage, *Table 5.4 Typical Regeneration Turn-on & Turn-off Voltage Levels*. These parameters are automatically set when the motor parameters are downloaded to the controller but should be verified to ensure safe operation.

- Open " $DS2100 \rightarrow Drive \ Setup \rightarrow Regen \ Resistor \rightarrow Regen \ Parameters"$ and ensure that the " $Regen-On \ Voltage$ (V)" and " $Regen-Off \ Voltage \ (V)$ " are set correctly
- Select Write All.
- Confirm that values are correct.

Figure 4.8 Regeneration Parameters

SECTION 4: GETTING STARTED

For drives equipped with an internal Regeneration resistor, the parameters associated with that resistor are set automatically. If the drive has external regeneration capability only, all regeneration resistor parameters are set to zero. In this case, the drive will display a fault (F3) and will not enable until suitable parameters for the external regeneration resistors are entered and saved. The resistance and power rating of the external regeneration resistor connected to the drive should be entered in the "*External Regen*" window.

- Open "*Drive Setup* \rightarrow *Regen Resistor* \rightarrow *External Regen*" and enter the correct resistance and power ratings for the externally connected Regen Resistor (RR).
- Select Write All.
- Confirm that values are correct.

			Oktual Based Sussessfeld Contractor ACIO
B B	External Regen : 0 External Regeneration External Regeneration Resistance (Ohm) Power (M)	Resistor Perameters 33.0 250.0	Status: <mark>Read Successful (Controller ACK)</mark>
Control Loop Configuration Configuration Upload/Download Configuration Upload/Download Configuration Upload/Download Configuration Upload/Download	Continuous on-time (s) Initial on-time (s)	0.020	

Figure 4.10 External Regen Parameters

The software also checks the value of regeneration resistance entered. If too low a value is entered, such that the current that would flow on turn-on of the regeneration transistor exceeds the ratings of the regeneration, transistor, a fault (F3) is also reported.

The drive will also display an F3 if the user inputs data for a regeneration resistor such that the current, which would flow in the regeneration transistor on turn on, is greater than the Max RR Current level set in the GUI panels "DS2100 \rightarrow Drive Setup \rightarrow Regen Resistor \rightarrow Regen Parameters".

4.8 Acceleration Limits

The acceleration limiting is performed on the velocity command. The deceleration limits can be set separately to the acceleration limit, but writing to the acceleration limit will always set all of the deceleration limits to the same value as the acceleration limit.

- Set the Acceleration limits accordingly using the Drive Set-up panel "Drive Setup → Limits → Acceleration Limits"
- E.g. Set the Acceleration limits to "10,000" rad/s2

Moog WinDrive 3.02 - D52100 v0.2 Configuration				_ <u>8</u> ×
Navigator Driver View Help				
	ø		Status: Read Successful (Controller ACK)	
DS2100 0.2 : 0	Acceleration Limits : 0			
DS2100 RS232 Interface Mode Software ID	Acceleration Limit Par	rameters		
Controller Access Level Ontroller Front Panel	Max. Acceleration (rad/s^2)	1000þ.0		
Control with GUI Control with Step Function Generator	Max. Deceleration (rad/s^2)	100000.0		
Control with Sine Function Generator CANopen				
Control Loop Configuration	Quickstop Deceleration (rad/s^2)	100000.0		
Compensators DC Bus Monitoring	Fault Mode Deceleration (rad/s^2)	100000.0		
Command Direction				
Limits Current Limits				
Acceleration Limits				
Digital I/O				
THE Status and Faults				
Parameter Utilities				
Parameter Database				
- Oscilloscope				
Firmware Upgrade				
Parameter Database Upload				
Configuration Upload/Download				
Unit Selection				
Fault History				
Device Into				
<u>/</u>				

Figure 4.12 Acceleration Limits

4.9 Parameter Utilities

The user's parameters should now be saved to the non-volatile memory, such that when the drive is power cycled, the DS2100 is initialised with the user's parameters and not the default parameters.

• Open "*Parameter Utilities Drive Parameter Load/Save*" and left click "*Save Al Parameters*" to save all parameters to the non-volatile memory.

f Moog WinDrive 3.02 - DS2100 v0.2 Configuration			_ 8 ×
File Navigator Driver View Help			
	Status: Read Successful (Controller ACK)		
D52100 0.2 : 0	Drive Parameters : 0		
DS2100 RS232 Interface Mode Software ID	? C + 1		
Controller Access Level	Parameter Load/Save	ter and the second s	
Controller Front Panel Control with GUI	Load Default Parameter Values	Load Defaults	
Control with Step Function Generator Control with Sine Function Generator	Save all Parameters	Save All	
E CANopen	Load all Parameters	Load All	
🖃 💼 Drive Setup			
庄 💼 Control Loop Configuration			
E Active Limiting			
🗄 💼 Compensators			
🕀 💼 DC Bus Monitoring			
🕀 💼 Filters			
Command Direction			
🖻 💼 Limits			
Current Limits			
Velocity Limits			
Acceleration Limits			
🗄 💼 Regen Resistor 📃 📃			
🗄 💼 Digital I/O			
🗄 💼 Motor Setup			
🗄 💼 Application Specific Setups			
General Status and Faults			
Parameter Utilities			
Drive Parameter Load/Save			
Encoder Parameter Load/Save			
Parameter Database	<u></u>		

Figure 4.14 Parameter Utilities

4.10 Status & Faults

Before high power can be applied all faults must be cleared from the DS2100. The prefix "U" indicates a warning and an "F" indicates an error on the DS2100's 7-segment display. *Refer Section 5.11 Drive Monitoring and Fault Detection*. After the motor and regeneration parameters have been entered as detailed in the previous sections, all faults should be cleared as follows:

• "Status and Faults \rightarrow Clear Faults \rightarrow Clear Faults".

The DS2100 should now display a "U1" to indicate "High Power Not Ready". All other errors and warnings should be removed. Should an error indication remain, power-cycle the drive.

Should a persistent error occur *Refer to DS2100 User's Manual Section 5.11 Drive Monitoring and Fault Detection* to identify the error. Where applicable check all connections and parameter settings associated with the particular error.

Figure 4.16 Clearing Faults

i

Failure to remove All errors before high power is applied will result in the soft start relay remaining open and no DC Bus voltage being applied to the system

4.11 High Power Application

Apply the appropriate 3-phase voltage (230Vac/400Vac) to the DS2100 controller and allow approximately 1.3 seconds for the softstart sequence to complete. If the drive has been set up correctly and all errors removed the softstart relay should close to indicate a successful soft start-up.

The "Continuous Bus Voltage" window provides an indication of the "Detected DC Bus Voltage", "Over Voltage Limit" and "Under Voltage Limit"

" $DS2100 \rightarrow Drive \ Setup \rightarrow DC \ Bus \ Monitoring \rightarrow Continuous \ Voltage$ "

Figure 4.18 DC Bus Voltages

MOOG DS2100 User's Manual

4.12 Autophasing

Once the high power has been applied the user can then perform an Autophasing operation. For all commutation types the parameter "*comofs*" contains the mechanical offset angle between the commutation feedback and the motor stator. 16-bit full scale corresponds to one full mechanical revolution.

In certain cases the motor has a resolver or encoder built in that has been adjusted in the factory, this angle can then be obtained from the motor datasheet.

Otherwise it is possible to do an automatic adjustment of this value using "Commutation Parameters"

- Open the '*Commutation Parameters*' panel in the *Motor Setup* menu item
- Select 'Torque Mode'
- Select "Start" in the "Commutation parameters" panel
- Ensure that hardware drive enable input has +24V applied and enable the drive using the enable button () in the toolbar.
- When the function has completed, save the parameters to NVM using the Save All parameters command in the Parameter Utilities "Full Parameters Load/Save → Save all Parameters → Save All".

Figure 4.21 Commutation Parameters

Warning: Ensure that all listed safety precautions are observed when enabling the drive. Ensure that motor is securely mounted on a suitable fixture. Sudden and considerable movement of the motor, with a risk of injury will occur during high speed reversals if the motor is not securely mounted.

PAGE 4-14

4.13 Torque Mode Enable

Moog WinDrive 3.02 - D52100 v0.2 Configuration				[_ & ×
	Ø		Status: Write Su	Iccessful (Controller ACK)	
DS2100 0.2 : 0 DS2100 Controller Access Level Controller Access Level Control with Stap Function Generator Control with Stap Function Generat	Step Function Generator : 0	Control of Drive from Trq Standby Trq Trq Trq (FVV) Vel Vel Vel (FVV) Pos Pl Pos Pl Pos T0	Step Function Generator Function generator Amplitude (A) Offset (A) Period (S) Duty Cycle (%) Actual Position (rad) Maximum Current (A) Maximum Velocity (rad/S)	rator setup 0.00000000 0.6048 50 50554.0371 values 22.0 1000.0	
	Position TO (Field Weakening ON)	Pos 10 (FW)			

Figure 4.23 Torque Mode Drive Enable

- Open "Control with Step Function Generator", and click "Trq".
- Click "*Read All*" to confirm the "*Drive Mode Status*" reads "*Trq*",
- Give the drive an offset by typing "0.5" in the "Offset" textbox and click "Write All",
- Click enable button ().
- The Drive will start to accelerate in a clockwise direction until it reaches maximum velocity.
- Disable drive using disable button (......).

4.14 Velocity Mode Enable

Figure 4.25 Velocity Mode Drive Enable

- Open "Step Function Generator", and click "Vel".
- Click "*Read All*" to confirm the "*Drive Mode Status*" reads "Vel".
- Give the drive an offset by typing "50" in the "Offset" textbox and by clicking "Write All",
- Click enable button () and check that the drive rotates in a clockwise direction,
- Set the offset back to "0" rad/s,
- Disable drive using disable button (......).
- Give the drive an "Amplitude" of "100" rad/s, a "Period" "4" s and click "Write all",
- Enable Drive and ensure that the motor turns rapidly, changing direction approximately every 2 seconds,

4.15 Oscilloscope

4.15.1 Oscilloscope Set-up

- Open the oscilloscope, " $DS2100 \rightarrow Oscilloscope$ "
- The Status prompt in the lower right hand corner should be yellow and read "*initialising*"
- Set-up Channels 1-3, Timebase and Trigger as per the table 1 below,

Figure 4.27 Oscilloscope

	Channel 1	Channel 2	Channel 3	Timebase	Trigger
Status	Visible	Visible	Visible		
Source	Demand	Velf	Iqact		Demand
Scaling	20000000 / div	20 / div	5 A / div	0.002 s / div	
Delay					Delay - 0.002 s
Coupling					DC
Slope					Rising
Mode					Single

Table 1 Oscilloscope Channel Set-up

4.15.2 Setting the Velocity Loop Gains

- Open the Velocity Loop Panel, "Drive Setup → Compensators → Velocity Loop Compensators".
- Set the p-gain to an initially low value and the I-gain to '0' and click "Write"
 - *"p-gain = 0.01"*
 - *"i-gain = "0"*

🔗 Moog WinDrive 3.02 - D52100 v0.2 Configuration										
Navigator Driver View Help										
Ø		Status: Read Successful (Controller ACK)								
Velocity Loop Compensators : 0										
Velocity Loop Compensator Tuning										
Configuration		Feedback								
extd vel comp. p-gain (Kp)	0.01	velocity command (rad/s)	0.0							
extd vel comp. i-gain (Ki)	0.0	velocity command (previous) (rad/s)	0.0							
extd vel comp. ie-gain	0.0	actual velocity (filtered) (rad/s)	-0.2							
velocity loop rate divider	4	extd vel. comp. error torque cmd (vel comp o/p) (A) torque cmd (gen filter o/p) (A)	0.1291646 3.4532762E-6 -2.8743214E-4							
	Velocity Loop Compensators : 0	Velocity Loop Compensators : 0 Y C I I I Velocity Loop Configuration extd vel comp. p-gain (Kp) 0.0 extd vel comp. i-gain (Ki) 0.0 velocity loop rate divider	Velocity Loop Compensators : 0 Velocity Loop Compensator Tuning Configuration Feedback extd vel comp. p-gain (Kp) 0.01 velocity command (rad/s) extd vel comp. i-gain (Ki) 0.0 velocity command (previous) (rad/s) extd vel comp. i-gain 0.0 actual velocity (filtered) (rad/s) velocity loop rate divider 4 extd vel. comp. error torque cmd (vel comp o/p) (A) torque cmd (gen filter o/p) (A) torque cmd (gen filter o/p) (A) torque cmd (gen filter o/p) (A)	Status: Read Successful (Controler ACK) Velocity Loop Compensators : 0 Configuration Feedback extd vel comp. pgain (Kp) 0.0 velocity command (rad/s) 0.0 extd vel comp. pgain (Kh) 0.0 velocity command (rad/s) 0.0 extd vel comp. pgain 0.0 extd vel comp. le-gain 0.0 actual velocity (fittered) (rad/s) 0.2 velocity loop rate divider extd vel. comp. error 0.1291646 torque cmd (vel comp o(p) (A) 3.4532782E-6 torque cmd (gen fitter o(p) (A) 2.8743214E-4 						

Figure 4.29 Velocity Loop Gains

4.15.3 Step Response With Velocity p-gain = 0.01 & i-gain = 0.0

The following step responses were obtained using a G464-804 Global motor with resolver feedback and under no-load conditions.

- Click enable button ()
- The Oscilloscope should trigger and the status prompt should turn red and read "Stopped"
- Disable drive using disable button (......).

Figure 4.31 Step Response With Velocity p-gain = 0.01 & i-gain = 0.0

4.15.4 <u>Step Response With Velocity p-gain = 0.075 & i-gain = 0.0</u>

- Change the Velocity Loop gains "Drive Setup → Compensators → Velocity Loop Compensators" to:
 - *"p-gain = 0.075"*
 - *"i-gain = "0*"
- Reset the trigger mode to Normal
- Click enable button (
- The Oscilloscope should trigger and the status prompt should turn red and read "Stopped"

Figure 4.33 Step Response With Velocity p-gain = 0.075 & i-gain = 0.0

4.15.5 Step Response With Velocity p-gain = 0.075 & i-gain = 5.0

Change the Velocity Loop gains "Drive Setup \rightarrow Compensators \rightarrow Velocity Loop Compensators" to:

- "p-gain = 0.075"
- *"i-gain* = *"5*"
- Reset the trigger mode to Normal
- Click enable button (¹).
- The Oscilloscope should trigger and the status prompt should turn red and read "*Stopped*"
- Disable drive using disable button (...).

Figure 4.35 Step Response With Velocity p-gain = 0.075 & i-gain = 5

4.16 Power-Down Sequence

Ensure the drive is disabled and remove Hi Power (AC mains) from the DS2100 controller. Wait until the DC Bus Voltage has decreased to below 50VDC before servicing the controller, " $DS2100 \rightarrow DC$ Bus Monitoring \rightarrow Detected DC Bus Voltage".

Close the Oscilloscope and the Windrive GUI and remove the 24V DC Logic Back up from the DS2100.

The sequence outlined in the preceding sections provides the user with step by step procedure on how to operate a DS2100 controller using the Windrive software performing basic motoring operations.

For a more in depth analysis of the DS2100 and Windrive Software please consult the relevant sections of the DS2100 User's Manual and the GUI User's Manual.

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

TABLE OF CONTENTS

SECTION	N 5: DS2100 FUNCTIONAL OVERVIEW	
5.1	INTRODUCTION	
5.2	DS2100 Conventions	
5.2.1	Direction of Rotation	
5.3 1	Power Interface Section	
5.3.1	High Power Section Description	
5.3.2	High Voltage Rectification and Filtering	
5.3.3	Soft Start	
5.3.4	Low Voltage Control Power Supply	
5.3.5	Regeneration Control	
5.3.6	Power Interface Parameters	
5.4 I	MOTOR CONFIGURATION	5-13
5.4.1	Motor Name	5-13
5.4.2	Electrical Parameters	5-13
5.4.3	Current Loop Parameters	5-13
5.4.4	Feedback and Commutation Parameters	5-14
5.4.5	Bus Parameters	
5.4.6	Motor Thermal Parameters	
5.4.7	Motor Rating Parameters	
5.4.8	Motor Configuration Parameters	
5.5 l	Resolver Input	
5.5.1	Resolver Configuration	
5.5.2	Resolver Parameters	
5.6 l	Encoder Input	
5.6.1	Encoder Configuration	
5.6.2	Encoder Parameters	
5.7 (COMMUTATION MODULE	
5.7.1	Commutation Configuration	
5.7.2	Commutation offset adjustment	
5.7.3	Commutation Parameters	
5.8	POSITION FEEDBACK	
5.8.1	Position Feedback Configuration	
5.8.2	Position feedback parameters	
5.9	VELOCITY FEEDBACK	
5.9.1	Velocity Feedback Configuration	
5.9.2	Velocity Jeeaback parameters	
5.10	DIGITAL INPUT AND OUTPUT FUNCTIONAL DESCRIPTION	
5.10.1	 Digital Input Functionality Digital Output Functionality 	
5.10.2	2 Digital VA Parameters	
5 11 (Control Loops	
5 11	1 Position Loon Compensator	5-43
5 11 1	 Velocity Loop compensator 	5-46
5 11	3 Current / Torque Loop Compensator	5-51
5.11.4	4 Control Loop Configuration	5-55
5.11.	5 Control Loop Parameters	5-58
5.12	DRIVE MONITORING & FAULT DETECTION	
5.12.	1 Drive Monitoring	
5.12.2	2 Faults and User Indication in the DS2100	
5.12	3 Drive Fault Reaction	
5.12.4	4 Fault Messages - CAN	
5.12.5	5 Fault Clearing	
5.12.0	6 Event Log	
5.12.2	7 Drive Monitoring & Fault Detection Parameters	
5.13	SELF PROTECTION	5-74

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

5.13.1	Power Amplifier Thermal Protection Mechanism	
5.13.2	Motor Thermal Protection Mechanism	
5.13.3	Cabling and Interconnect Protection Scheme	
5.13.4	Regeneration Resistor Protection Scheme	
5.14 PA	RAMETER STORAGE	
5.14.1	Command Parameters	5-75
5.14.2	Storage Types	5-75
5.14.3	Data Group	5-75
5.14.4	Parameter Storage Parameters	5-77

5.1 Introduction

This section describes the functionality of the DS2100. It details the various modes of operation of the drive. The DS2100 CAN controller supports communications between drives and to a controller over a CAN network. Details of the CAN interface are given in Sections 6 and Section 7 of this manual.

5.2 DS2100 Conventions

This section deals with commonly understood conventions for DS2100 operation.

5.2.1 Direction of Rotation

i

The positive direction of rotation is clockwise, when the motor is viewed from the shaft end, as shown in the figure below.

NOTE:-. For operation with the encoder, positive rotation as defined here corresponds to Channel A **leading** Channel B.

For operation with the encoder, positive rotation as defined here corresponds to Channel A leading Channel B.

The direction convention applies to all torque, velocity and position variables. For example a positive torque command should tend to rotate the motor in a clockwise direction when viewed from the shaft end.

5.3 Power Interface Section

5.3.1 High Power Section Description

The high power supply section has the following features:

- Three Phase a.c Operation
- Direct Off-Line 230 V r.m.s to 460V r.m.s. +10% Operation
- Soft Start (a.c. Inrush Current Limiting)
- Input MOV Transient Protection
- Internal Regeneration capability (μA units only)
- Drive Ready Relay
- Provision for External Regeneration Resistor
- Integral Heat Sink and Cooling Fans
- 24V Logic Backup (mandatory on μA size units)

These features are described in the next sections.

WARNING - The high power section contains large capacitors that maintain high voltage on the DC+ to DC- terminals for several minutes after input power is removed, if the regeneration circuit is not operating normally. Wait at least 5 minutes for the μ A sizes (6 minutes for the A-D sizes) after power shutdown for capacitors to discharge. Then use a voltmeter to check for safe voltage from the DC+ terminal to the DC- terminal before contacting terminals or commencing any service or maintenance activities to ensure no lethal voltages are present. Failure to follow this procedure may result in serious personal injury or death.

The high power supply section may be divided into functional blocks:

- High voltage rectification and filtering
- Soft-start of a.c. mains power-on
- Low voltage control power supply
- Regeneration circuit
- Monitoring and fault logic circuits

5.3.2 High Voltage Rectification and Filtering

The a.c. mains input is rectified by a three phase diode bridge and filtered by a bank of electrolytic capacitors to generate the internal DC Bus. This high power d.c. supply is unregulated and will vary in direct proportion with the a.c. mains input voltage magnitude. The dc bus voltage is monitored continuously and is available for user display, parameter <u>bus voltage actual</u> (index 0x60F7, subindex18). Once the softstart relay has closed, the nominal DC bus, voltage is set in software, parameter <u>bus voltage nominal</u> (index 0x60F7, subindex 17), which will limit the maximum speed, at which a motor can rotate.

The software will generate a fault on both undervoltage (F12) and overvoltage (F2) level being detected. The undervoltage level, parameter <u>bus under voltage limit</u> (index 0x24A0, subindex 6) is set, by default, to 75% of the nominal bus voltage. This undervoltage percentage level, parameter <u>bus_under_voltage_limit_percentage</u> (index 0x24A0, subindex 7) can be changed to different levels to suit application requirements.

The overvoltage level, parameter <u>bus over voltage limit</u> (index 0x24A0, subindex 5) is typically set by the motor configuration and will generally be either 400V or 800V.

A.C. Mains Type	D.C. Bus Voltage Level
230V Three Phase Mains	325Vd.c.
400Va.c. Mains	565Vd.c.

Table 5.1 Magnitude of the D.C. Bus

5.3.3 Soft Start

Soft start is used to limit the inrush current to the d.c. bus capacitor bank on application of a.c. mains power. This is intended to prevent nuisance tripping of circuit breakers or blowing of line fuses on power-up.

The soft start relay will close when the monitoring circuit and associated control software determines that the high-voltage d.c. bus has charged up and the DC bus is at steady state. Softstart will only occur if the DC bus voltage level is above 70V.

5.3.4 Low Voltage Control Power Supply

Control power for the logic circuits is generated by a DC/DC converter, which provides control-circuitry power that is isolated from the mains input. This control voltage also powers the cooling fans. The DC/DC can generate control power from two sources

- 1. D.C. Bus if it is greater than 120Vd.c. (Not available on the DS2100 µA size drives)
- 2. 24Vd.c. external supply which is provided by the user specially for control-backup power

These two sources are diode 'ORed' together to produce the internal 24V logic backup supply.

The state of the internal control electronics logic supplies are available to the user to monitor. If these supplies are out of tolerance the drive will report a fault and react accordingly. The parameters associated with viewing the internal logic supplies are given below.

Parameter Name	Index / Subindex	Description
supply +24V	0x2810 / 25	Internal 24V Logic Supply
<u>supply +3V3</u>	0x2810 / 5	3.3V Logic Supply
supply -15V	0x2810 / 10	-15V Logic Supply
supply +15V	0x2810 / 15	+15V Logic Supply
supply_+2V_ref	0x2810 / 20	2V Reference Level
encoder_supply	0x2810 / 30	Encoder Supply

Table 5.2 Logic Voltage Supply Monitoring Parameters

If the internal 24V logic supply voltage falls below 20V, the drive will disable and enter a fault status (F9). The drive will automatically perform a power down save which saves certain data to memory such as elapsed time. This save does not however save all parameters to non-volatile memory. Any unsaved parameters will be lost if the internal 24V logic backup is lost.

5.3.5 <u>Regeneration Control</u>

Rapid motor deceleration or an overhauling load creates a situation in which energy is returned back into the D.C. Bus. The regeneration energy will charge up the power supply bus capacitors, causing their voltage to increase. To prevent capacitor over voltage, a shunt regulator circuit senses when the bus voltage exceeds the Regeneration cut-in voltage and switches a Regeneration resistor across the D.C..Bus, (via a Regeneration transistor) to dissipate the Regeneration energy.

The Regeneration resistor is protected by software to limit the power delivered to the internal or external Regeneration resistors. As the DS2100 uses only one Regeneration transistor, both the internal and external Regeneration resistors are effectively connected in parallel. Thus, the software will limit the duty cycle of the transistor to protect the component with the lower power ratings.

The Regeneration resistor control software allows the use to enter data for both the internal and external regeneration resistors separately. The software then calculates the appropriate duty cycle for the regeneration transistor. The available and actual regeneration powers are available to the user. If the regeneration power is greater than 90% of the available regeneration power, the drive will display a Regeneration Power Warning (U4) on the 7-segment display to indicate to the user that the drive is close to its maximum regeneration capability.

The Regeneration control can operate in one of five modes:

- 1. Regeneration Off:- In this mode, the regeneration transistor is not switched on and therefore the supply must have the capability to absorb the regeneration power so that the bus voltage does not rise above the upper limit.
- 2. Duty cycle controlled:- In this mode, the duty cycle calculated from the regeneration resistor data is used to detemine the off times for the regeneration transistor from the on time parameters. The initial on time is used from the first regeneration event until the initial on time has been consumed. After, this the continuous on time is used to determine the regeneration off time. If regeneration is off for sufficient time to allow the initial off time to run out, then the initial on time is used for the next regeneration event.
- 3. Duty cycle controlled + power fault:- In this mode, the regeneration duty cycle is controlled in the same way as above, but a fault is detected if the average power exceeds the maximum power for the regeneration resistor(s). This fault (regen max power exceeded) will cause the drive to disable and transition to a fault mode.
- 4. Power fault only:- In this mode, the regeneration duty cycle is not controlled. The regeneration transistor is switched on when the bus voltage rises above the regeneration turn-on voltage and is switched off when the bus voltage falls below the turn-off voltage. The regeneration resistor is only protected by the fault detection of the average power exceeding the maximum regeneration power.
- 5. Power warning only:- In this mode, the regeneration duty cycle is not controlled and the regeneration resistor is not protected by the drive at all. The regeneration transistor is switched on and off as in the 'power fault only' mode above, but the fault detection is disabled. Only the regeneration power warning is available to indicate that the regeneration is approaching its maximum capability.

Parameter Name	Index / Subindex	Description
regen_enable	0x24A4 / 21	Regeneration Control Mode
		0 - Regeneration Off
		1 - Duty cycle controlled
		2 - Duty cycle controlled + power fault
		3 - Power fault only
		4 - Power warning only
regen on voltage	0x24A4 / 2	Regeneration Transistor Turn-on Voltage
<u>regen off voltage</u>	0x24A4 / 1	Regeneration Transistor Turn-off Voltage
<u>regen power filtered</u>	0x24A4 / 5	Average Regeneration Power (Measured)
<u>regen internal resistance</u>	0x24A4 / 11	Internal Regeneration Resistor Resistance
<u>regen internal resistor power</u>	0x24A4 / 12	Internal Regeneration Resistor Power
<u>regen_internal_resistor</u> <u>initial_on_time</u>	0x24A4 / 14	Internal Regeneration Resistor Initial on-time in ms
<u>regen_internal_resistor_contin</u> uous on time	0x24A4 / 13	Internal Regeneration Resistor Continuous on-time in ms
regen external resistance	0x24A4 / 15	External Regeneration Resistor Resistance
regen external resistor power	0x24A4 / 16	External Regeneration Resistor Power
regen external resistor initial on time	0x24A4 / 18	External Regeneration Resistor Initial on-time in ms
<u>regen external resistor contin</u> <u>uous_on_time</u>	0x24A4 / 17	External Regeneration Resistor Continuous on-time in ms
regen_power_capability	0x24A4 / 22	Total Regeneration Power Capability
regen max current	0x24A4 / 19	Maximum Regeneration Current

The parameters associated with the regeneration control are given below.:

Table 5.3 Regeneration Parameters

The Regeneration transistor turn-on and turn-off voltages are set with the motor parameters and DC bus overvoltage level. Typically these voltages are set at follows.

Motor Voltage	Bus Overvoltage	Regen on Voltage	Regen off Voltage
300V	400V	390V	380V
600V	800V	780V	760V

 Table 5.4 Typical Regeneration Turn-on & Turn-off Voltage Levels

For drives equipped with an internal Regeneration resistor, the parameters associated with that resistor are set automatically. If the drive has external regeneration capability only, all regeneration resistor parameters are set to zero by default. In this case, the drive will display a fault (F3) and will not enable until suitable parameters for the external regeneration resistors are entered and saved.

The software also checks the value of regeneration resistance entered. If too low a value is entered, such that the current that would flow on turn-on of the regeneration transistor exceeds the ratings of the regeneration, transistor, a fault (F3) is also reported.

5.3.6 **Power Interface Parameters**

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
H	IIGH VOLTAGE												
	bus voltage actual	0x60F7	18	yes	f32	r	-	-	-	V	Ν	А	1232
Ĩ	bus voltage nominal	0x60F7	17	no	f32	r	-	-	-	V	Ν	А	1229
I	bus under voltage limit	0x24A0	6	no	f32	r	-	-	-	V	Ν	А	1234
I	bus under voltage limit percentage	0x24A0	7	no	f32	r/w	75	0	100	%	С	А	1235
	bus over voltage limit	0x24A0	5	no	f32	r/w	800	0	1000	V	С	А	1233
L	OW VOLTAGE												
	supply_+24V	0x2810	25	yes	f32	r	-	-	-	V	Ν	А	1441
I	supply_+3V3	0x2810	5	yes	f32	r	-	-	-	V	Ν	Α	1421
I	supply15V	0x2810	10	yes	f32	r	-	-	-	V	Ν	А	1426
ļ	supply_+15V	0x2810	15	yes	f32	r	-	-	-	V	Ν	А	1431
ļ	supply_+2V_ref.	0x2810	20	yes	f32	r	-	-	-	V	Ν	Α	1436
	encoder_supply	0x2810	30	yes	f32	r	-	-	-	V	Ν	Α	1446
R	EGENERATION CONTROL												
	regen enable	0x24A4	21	no	U16	r/w	1	0	4	-	С	А	1268
I	regen_on_voltage	0x24A4	2	no	f32	r/w	780	10	-	V	С	Α	1249
I	regen_off_voltage	0x24A4	1	no	f32	r/w	760	0	-	V	С	А	1248
	regen_power_filtered	0x24A4	5	yes	f32	r	-	-	-	W	Ν	Α	1252
	regen_internal_resistance	0x24A4	11	no	f32	r/w	see note 1	0	-	Ohm	F	А	1258
ļ	regen_internal_resistor_power	0x24A4	12	no	f32	r/w	see note 1	0	-	Ohm	F	А	1259
ļ	regen_internal_resistor_initial_on_time	0x24A4	14	no	f32	r/w		20	-	ms	F	A	1261
	regen_internal_resistor_continuous_on_t	0x24A4	13	no	f32	r/w		2	-	ms	F	А	1260
ļ	ime												
ļ	regen_external_resistance	0x24A4	15	no	f32	r/w	0	0	-	Ohm	С	Α	1262
ļ	regen_external_resistor_power	0x24A4	16	no	f32	r/w	0	0	-	Ohm	C	A	1263
ļ	regen_external_resistor_initial_on_time	0x24A4	18	no	<u>t'32</u>	r/w		20	-	ms	F	A	1265
	regen_external_resistor_continuous_on_t	0x24A4	17	no	f32	r/w		2	-	ms	F	А	1264
	ime												

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

regen power capability	0x24A4	22	no	f32	r	-	-	-	W	Ν	А	1269
regen_max_current	0x24A4	19	no	f32	r/w	see note 2	0	-	А	F	А	1266

 Table 5.5 Power Interface Parameter Access Detail

Note 1: The internal regeneration capability is automatically determined from the power stage at initialisation Note 2: The regeneration maximum current capability is automatically determined from the power stage at initialisation

5.4 Motor Configuration

There are a number of parameters that are required when configuring a specific motor for a drive. These parameters are held in the GUI, and downloaded by selecting the appropriate motor from the motor set-up folder, in the T361 navigator panel. For standard motors, these parameters will be held in a database on the PC, and downloaded by the GUI. For non-standard motors, the user must enter these parameters.

In addition to the typical electrical motor parameters which are downloaded (e.g. Number of Motor Poles, Resistance, Inductance, etc...), tuning parameters for the current loop, position feedback, commutation, motor thermal characteristics etc, need to be set for the drive, as these parameters will differ for each motor. The following section lists and explains the meaning of each parameter. More detailed descriptions of these parameters are given in the appropriate parts of this section of the manual.

The parameters are grouped as shown below.

5.4.1 Motor Name

Index	Туре	Units	Motor Database Name	Name
0x6410/1	str	None	Name	motor_name

5.4.2 Electrical Parameters

Index	Туре	Units	Motor Database	Name
			Name	
0x6410/2	u16	None	Pm	<u>motor_poles</u>
0x6410/3	f32	Ohms	Rtt	<u>motor Rtt</u>
0x6410/4	f32	Н	Lq	<u>motor_Lq</u>
0x6410/5	f32	Н	Ld	<u>motor_Ld</u>
0x6410/6	f32	V/rad/s	Ke	<u>motor ke</u>

Table 5.6 List of motor (Electrical) parameters

5.4.3 Current Loop Parameters

Because of the different electrical characteristics of each motor, the current loop must be optimised for the motor to be used with the controller. The control loop structure is described elsewhere, the parameters that must be set are summarised below: -

Index	Туре	Units	Motor Database	Name
			Name	
0x60F6/1	F32	V/A/Tsamp	DS2100_di	<u>current_loop_d-axis_i-gain</u>
0x60F6/2	F32	V/A	DS2100_dp	<u>current loop d-axis p-gain</u>
0x60F6/3	F32	V/A/Tsamp	DS2100_qi	<u>current_loop_q-axis_i-gain</u>
0x60F6/4	F32	V/A	DS2100_qp	<u>current_loop_q-axis_p-gain</u>
0x60F6/5	F32	None	DS2100_calk	current loop foldback minimum
0x60F6/6	F32	А	DS2100_cali	<u>current_loop_foldback_breakpoint</u>
0x60F6/9	F32	V/A/Tsamp	DS2100_oap	current_loop_alpha_observer_i_gain

0x60F6/10	F32	V/A	DS2100_oai	<u>current_loop_alpha_observer_p_gain</u>
0x60F6/11	F32	V/A/Tsamp	DS2100_obp	<u>current loop beta observer i gain</u>
0x60F6/12	F32	V/A	DS2100_obi	<u>current loop beta observer p gain</u>

Table 5.7 List of motor (Current Loop) parameters

5.4.4 Feedback and Commutation Parameters

Different sources for the feedback of motor position to the controller are available. The following tables lists these options. In the case where no encoder is used (i.e. comfbk = 1), then the encoder parameters may not need to be set. The resolver reference amplitude is in units of 32768/2V, Typically the default value for the resolver's reference amplitude is used. The number of resolver poles is required regardless of the feedback source. The values for encoder set-up are listed in the encoder section, and are summarised in the table below: -

Index	Туре	Units	Motor Database	Name
			Name	
0x2200/4	U16	none	DS2100_rref	resolver_amplitude
0x2171/1	U08	none	DS2100_comfbk	commutation_feedback
0x2171/2	S16	none	DS2100_comofs	commutation offset
0x2171/3	U16	none	Pr	<u>resolver_poles</u>
0x2e20/1	U08	none	DS2100_encsup	encoder_supply
0x2e20/2	U08	none	DS2100_enctyp	<u>encoder_type</u>
0x2e20/3	U32	none	encinc	encoder_number_of_increments
0x2e20/6	U08	none	ssibit	encoder_ssi_number_bits
0x2e20/7	U08	none	DS2100_ssicod	<u>encoder ssi coding</u>
0x2e20/8	U32	none	DS2100_ssimsk	encoder_ssi_data_bit_mask

Table 5.8 List of motor (Feedback and Commutation) parameters

5.4.5 Bus Parameters

The default value for the bus over-voltage limit is 800, with defaults of 760 and 780 for the regen. off and on limit respectively.

Index	Туре	Units	Motor Database Name	Name
0x24a0/5	F32	V	Vmax	bus_over_voltage_limit
0x24a4/1	F32	V	Vrgnoff	<u>regen_off_voltage</u>
0x24a4/2	F32	V	Vrgnon	regen on voltage

Table 5.9 List of motor (Bus) parameters

5.4.6 Motor Thermal Parameters

The coefficients that characterise the NTC of the motor, must be set for each motor. The temperature and span at which the current is foldback as a function of motor temperature, can also be set, along with the maximum temperature allowed for the motor. Thermal foldback is only possible where a NTC is present in the motor.

The motor thermal limiting is enabled by default, so the user should not modify the current limit mask setting.

Index	Туре	Units	Motor Database Name	Name
0x2805/1	F32	none	DS2100_ntca0	motor_sensor_coefficient_a0

0x2805/2	F32	none	DS2100_ntca1	motor_sensor_coefficient_a1					
0x2805/3	F32	none	DS2100_ntca2	motor_sensor_coefficient_a2					
0x2805/4	F32	none	DS2100_ntca3	motor_sensor_coefficient_a3					
0x2805/5	F32	°C	DS2100_ntcmin	motor_sensor_min_temperature					
0x2805/6	F32	°C	DS2100_ntcmax	motor_sensor_max_temperature					
0x6510/7	U16	none	DS2100_tlmena	<u>current limit mask</u>					
0x280A/8	F32	°C	Tmax	motor_maximum_temperature					
0x280A/9	F32	°C	DS2100_tlmstt	thermal_limit_motor_start_temperature					
0x280A/10	F32	°C	DS2100_tlmspn	thermal limit motor span temperature					

Table 5.10 List of motor (thermal) parameters

5.4.7 Motor Rating Parameters

The following parameters for speed and current ratings for the motor must also be set.

Index	Туре	Units	Motor Database Name	Name
0x6410/6	F32	А	Imax	motor_max_current_
0x6410/8	F32	rad/s	Nmax	motor_max_velocity
0x6410/12	F32	Arms	In	motor_max_continuous_rms_current
0x6076/0	U32	mNm	Mn	motor_rated_torque

Table 5.11 List of motor (ratings) parameters

5.4.8 Motor Configuration Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
Ν	NAME												
	motor_name	0x6410	1	no	str	r/w	?	-	-	None	С	А	?
F	ELECTRICAL												
	motor_poles	0x6410	2	no	U16	r/w	12	2	36	None	С	А	1072
	motor_Rtt	0x6410	3	no	F32	r/w	2.4	1.0e-9	-	Ohms	С	А	1073
	motor_Lq	0x6410	4	no	F32	r/w	5.180e-3	1.0e-9	-	Н	С	А	1075
	motor_Ld	0x6410	5	no	F32	r/w	4.920e-3	1.0e-9	-	Н	С	А	1076
	motor_Ke	0x6410	5	no	F32	r/w	1.16	1.0e-9	-	V/rad/s	С	А	1077
(CURRENT LOOP												
	current_loop_d-axis_i-gain	0x60F6	1	no	F32	r/w	6.35404981	0	-	V/A/Tsamp	С	А	1272
	current_loop_d-axis_p-gain	0x60F6	2	no	F32	r/w	32.02666839	0	-	V/A	С	А	1274
	current_loop_q-axis_i-gain	0x60F6	3	no	F32	r/w	6.35404981	0	-	V/A/Tsamp	С	А	1277
	current_loop_q-axis_p-gain	0x60F6	4	no	F32	r/w	32.02666839	0	-	V/A	С	А	1279
	current_loop_foldback_minimum	0x60F6	5	no	F32	r/w	0.4	0.1	1	None	С	А	1284
	current_loop_foldback_breakpoint	0x60F6	6	no	F32	r/w	140.0	0	-	А	С	А	1285
	current_loop_alpha_observer_i-gain	0x60F6	9	no	F32	r/w	0.01394492	0	-	V/A/Tsamp	С	А	1288
	current_loop_alpha_observer_p-gain	0x60F6	10	no	F32	r/w	0.19933257	0	-	V/A	С	А	1290
	current_loop_beta_observer_i-gain	0x60F6	11	no	F32	r/w	0.01394492	0	-	V/A/Tsamp	С	А	1293
_	current_loop_beta_observer_p-gain	0x60F6	12	no	F32	r/w	0.19933257	0	-	V/A	С	А	1295
F	FEEDBACK AND COMMUTATION												
	resolver_reference_amplitude	0x2200	4	no	U16	r/w	30000	10000	65535	Vrms/3861.7	С	А	1042
	commutation_feedback	0x2171	1	no	U08	r/w	1	-	2	none	С	А	1035
1	commutation_offset	0x2171	2	no	S16	r/w	5461	-	-	none	С	А	1036
	resolver_poles	0x2171	3	no	U16	r/w	2	2	12	none	С	А	1037
	encoder_supply	0x2e20	1	no	U08	r/w	5	5	12	none	С	А	1704
	encoder_type	0x2e20	2	no	U08	r/w	0	-	5	none	С	А	1705
	encoder_number_of_increments	0x2e20	3	no	U32	r/w	1024	1	-	none	С	А	1706

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

DS2100 User's Manual

1	encoder_ssi_number_bits	0x2e20	6	no	U08	r/w	13	2	32	none	С	А	1709
1	encoder_ssi_coding	0x2e20	7	no	U08	r/w	0	-	1	none	С	А	1710
	encoder_ssi_data_bit_mask	0x2e20	8	no	U32	r/w	0xfffffffc	-	-	none	С	А	1711
F	BUS												
	bus_over_voltage_limit	0x24a0	5	no	F32	r/w	800	0	1000	V	С	А	1233
J	regen_off_voltage	0x24a4	1	no	F32	r/w	760	0	1000	V	С	А	1248
_]	regen_on_voltage	0x24a4	2	no	F32	r/w	780	0	1000	V	С	Α	1249
T	THERMAL												
	motor_ntc_coefficient_a0	0x2805	1	no	F32	r/w	9.74168	-	-	none	С	Α	1385
J	motor_ntc_coefficient_a1	0x2805	2	no	F32	r/w	0.409214	-	-	none	С	А	1386
	motor_ntc_coefficient_a2	0x2805	3	no	F32	r/w	-6.43817E-4	-	-	none	С	Α	1387
	motor_ntc_coefficient_a3	0x2805	4	no	F32	r/w	5.33088E-7	-	-	none	С	А	1388
	motor_ntc_min_temperature	0x2805	5	no	F32	r/w	20.0	-	-	°C	С	А	1389
	motor_ntc_max_temperature	0x2805	6	no	F32	r/w	180.0	-	-	°C	С	А	1390
	current_limit_mask	0x6510	7	no	U16	r/w	0x27	-	-	none	С	Α	1135
J	motor_maximum_temperature	0x280A	8	no	F32	r/w	155	-	-	°C	С	А	1404
	motor_thermal_foldback_start	0x280A	9	no	F32	r/w	145	-	-	°C	С	Α	1405
_	motor_thermal_foldback_span	0x280A	10	no	F32	r/w	10	-	-	°C	С	Α	1406
F	RATING												
	motor_max_current_	0x6410	6	no	F32	r/w	24	0.1	-	А	С	А	1078
	motor_max_velocity	0x6410	8	no	F32	r/w	10000	0	20000	rad/s	С	A	1082
	motor_max_continuous_rms_current	0x6410	12	no	F32	r/w	1000	0.1	-	Arms	С	A	1087
	motor_rated_torque	0x6076	0	no	U32	r/w	1	1	-	mNm	С	Α	4226

Table 5.12 Motor Configuration Parameter Access Details

5.5 Resolver Input

The resolver input allows the connection of various resolvers for drive position feedback, velocity feedback or for motor commutation (rotor angle feedback).

The drive supplies the resolver with a sinusoidal reference signal (R1 - R2). The resolver output signals have the same frequency as the reference but the amplitude changes depending on the rotational angle. The output signals are normally referred to as Sine (S1 - S3) and Cosine (S2 - S4). By measuring the amplitude of both Sine and Cosine Signals and applying an arctan function the drive can determine the rotor angle of the motor.

Figure 5.2: Resolver Signal Amplitude

The picture shows the amplitude of the Sine and Cosine signals depending on the rotation angle of the resolver. Normally the reference voltage is about 4 Volts and the maximum Sine or Cosine voltage is about 2 Volts. The frequency is 5 kHz.

5.5.1 Resolver Configuration

5.5.1.1 Number Resolver poles

The number of resolver pole pairs determines the number of full Sine or Cosine amplitude cycles per full mechanical revolution. In order to function properly, the parameter <u>resolver_poles</u> (index 0x2171, subindex 3) has to be set to the number of resolver poles (pole pairs multiplied by 2). Refer to the motor manufacturers datasheet for further information. For standard motors in the motor database this parameter is configured as part of the motor parameter download.

5.5.1.2 Resolver transformer turns ratio

The resolver transformer turns ratio determines the required amplitude for the resolver reference output from the DS2100. This figure is normally quoted in the resolver data sheet. For standard motors in the motor database this parameter is configured as part of the motor parameter download. Failure to set the parameter *resolver transformer ratio* (index 0x2171, subindex 5) correctly may result in a resolver fault being detected.

5.5.1.3 Resolver reference amplitude

The parameter *resolver_amplitude* (index 0x2200, subindex 4) is the resolver reference amplitude determined from the resolver transformer turns ratio.

5.5.1.4 Resolver commutation position

The parameter <u>resolver_position_(raw)</u> (index 0x6510, subindex 4) contains the electrical angle of the resolver. Depending on the pole count of the resolver this value is proportional to the mechanical angle. The scaling is 16-bit full scale change over one electrical cycle of the Sine or Cosine signals. For example a change of 65536 in *resolver_position* corresponds to 360 degrees mechanical for a 2 pole resolver.

5.5.1.5 Resolver position

The parameter <u>resolver_position_(multi-turn)</u> (index 0x2421, subindex 18) contains a multi-turn version of the resolver commutation position, used in the position loop feedback. The multi-turn resolver position is created by counting the resolver commutation position rollovers.

5.5.2 Resolver Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
R	ESOLVER												
	resolver_poles	0x2171	3	no	u16	r/w	2	2	-	none	С	А	1037
Ī	resolver_transformer_ratio	0x2171	5	no	u16	r/w	0.5	0.22	1.34	none	С	А	1024
	resolver_amplitude	0x2200	4	no	u16	r/w	-	10000	65535	none	Ν	А	1042
I	resolver_position_(raw)	0x6510	4	yes	s16	r	-	-	-	none	Ν	Α	1057
	resolver_position_(multi-turn)	0x2421	18	yes	S32	r	-	-	-	none	Ν	A	1161

Table 5.13 Resolver Parameter Access Detail

5.6 Encoder Input

The encoder input allows the connection of various incremental encoders for drive position feedback, velocity feedback or for motor commutation (rotor angle feedback).

The encoder signals of an encoder with analogue sinusoidal output signals can be used for increased resolution through angle interpolation within one optical increment.

Figure 5.3: encoder signals

The picture shows typical analogue encoder signals and the digital signals derived from the analogue signals. The direction of rotation shown is positive, so that channel B leads channel A. By counting every digital signal transistion, the number of counts per mechanical revolution is four times the number of optical increments. Using the analogue input signals the angle in between the increments can be interpolated to achieve much higher resolution.

5.6.1 Encoder Configuration

5.6.1.1 Encoder Supply Voltage

The supply voltage of the encoder can be selected with the parameter <u>encoder supply</u> (index 0x2e20, subindex 1). It has to be set first to ensure proper operation. The following values are valid for <u>encoder supply</u>:

5	-	+5 Volts supply voltage
8	-	+8 Volts supply voltage
12	-	+12 Volts supply voltage

All other values will return an error when written.

5.6.1.2 Encoder types

There are various encoder types supported. They are selected with the parameter $\underline{encoder_type}$ (index 0x2e20, subindex 2). It can have the following values:

0	-	no encoder connected
1	-	Digital incremental encoder
2	-	Analogue incremental encoder with two analogue sinusoidal quadrature output signals with 1 Vpp amplitude
3	-	SSI interface absolute singleturn or multiturn encoder
4	-	Stegmann Hiperface interface absolute encoder
5	-	Heidenhain EnDat 2.1 interface absolute encoders

Depending on the encoder type selected there are more parameters that have to be initialised in order to allow encoder operation.

5.6.1.3 Number of increments

For normal digital, analogue or SSI interface encoders (*encoder_type* 1..3) the parameter <u>encoder_number_of_increments</u> (index 0x2e20, subindex 3) has to be set to the number of increments (optical lines) per mechanical revolution. If the encoder is used for motor commutation only powers of 2 are allowed for <u>encoder_number_of_increments</u> (i.e. 512, 1024, ...). When a Hiperface or Endat encoder is connected this parameter is obtained from the encoder. In this case <u>encoder_number_of_increments</u> is read only.

5.6.1.4 Encoder Position

The parameter <u>encoder_position</u> (index 0x2e20, subindex 10) contains the 32-bit encoder position. It is assembled using the encoder incremental count value, an interpolated analogue value (only when using encoders with analogue output signals) and an overflow counter that counts the full revolutions of the encoder.

5.6.1.5 Encoder resolution

For encoders with analogue sinusoidal signals the incremental steps can be interpolated to achieve higher resolution and better velocity signals. The resolution is user selectable using the parameter <u>encoder resolution</u> (index 0x2e20, subindex 5). It determines the bit position of the full encoder increments in the encoder position <u>encoder_position</u>. The minimum value is 2 because of 4 incremental steps per optical encoder line using every transition in the quadrature signal. The reasonable maximum for <u>encoder_resolution</u> is about 12. Values above that can be used to change the scaling of the encoder position value but doesn't increase the available resolution any more. Please note that the absolute accuracy still largely depends on the accuracy of the analogue encoder signals.

5.6.1.6 Encoder Offset

To compensate for a mechanical misalignment between the encoder and the desired encoder position, the parameter <u>encoder offset</u> (index 0x2e20, subindex 9) can be used. Setting it to the value of <u>encoder position</u> at a certain position will zero the encoder position output value <u>encoder_position</u>.

5.6.1.7 Direction of rotation

1

The direction of rotation can be reversed with the parameter <u>encoder direction of rotation</u> (index 0x2e20, subindex 4). Normally positive direction is clockwise rotation when looking onto the encoder shaft. In this case is channel B leading the channel A signals. If the direction has to be changed because of different encoder signals or mounting of the encoder on the motor or machine, <u>encoder direction of rotation</u> can be set to 1. This reverses the direction so that positive direction is counter clockwise rotation when looking onto the encoder shaft. The change of direction affects the encoder position, the encoder velocity and the encoder commutation angle.

- 0 normal direction: positive position count when rotating clockwise looking onto the encoder shaft
 - reversed direction: positive position count when rotating counter clockwise looking onto the encoder shaft

5.6.1.8 Number of data stream bits for SSI encoders

For SSI encoders the number of bits in the data stream has to be set using the parameter <u>encoder ssi number bits</u> (index 0x2e20, subindex 6). It contains the number of bits in the raw data stream (not the number of encoder position bits !). See encoder manufacturers manual for further information.

5.6.1.9 Data encoding for SSI encoders

The encoding can be changed between binary and Gray code transmission with the parameter <u>encoder_ssi_coding</u> (index 0x2e20, subindex 7). The following values are possible:

0	-	Gray code
1	-	Binary code

See encoder manufacturers manual for further information.

5.6.1.10 Position bit mask for SSI encoders

Depending on the encoder, not all bits in the SSI data stream contain position information. To accommodate this, the parameter <u>encoder ssi data bit mask</u> (index 0x2e20, subindex 8) has to be set to mask off all the unused bits in the raw data stream. A one in <u>encoder ssi data bit mask</u> means that the bit contains position information. The least significant bit in <u>encoder ssi data bit mask</u> corresponds to the last bit clocked out of the encoder. Bits above the number set in <u>encoder ssi number bits</u> are 'don't care'; they are ignored.

5.6.1.11 Encoder commutation position

The encoder can also be used for commutation of the motor (motor phase current change depending on rotor angle position). The parameter <u>encoder_commutation_position</u> (index 0x2e20, subindex 11) contains a 16-bit value that represents a full mechanical revolution independent of the encoder resolution setting <u>encoder_resolution</u>. The encoder direction of rotation parameter <u>encoder_direction of rotation</u> also changes the direction for the encoder commutation position.

5.6.1.12 Set Encoder Position

Encoders with a Hiperface or EnDat digital interface provide the facility to be able to set the datum position from which the absolute position is measured. This feature is supported using the parameter *encoder_set_position*.

5.6.1.13 Encoder EEPROM Enable

Encoders with a Hiperface or EnDat digital interface provide onboard EEPROM for parameter storage. This can be used by the DS2100 to store motor related parameters so that a drive can be replaced while retaining the motor setup. The EEPROM parameter storage is enabled by setting the parameter *encoder_eeprom_enable* to 1. This parameter is set to 0 by default.

The parameters stored in the encoder EEPROM are:

encoder supply encoder offset commutation feedback source commutation offset motor number of poles motor Rtt motor Lq motor Ld motor Ke motor maximum current motor maximum velocity motor velocity limit current limit mask bus over-voltage limit regen off voltage regen on voltage current loop d-axis i-gain current loop d-axis p-gain current loop q-axis i-gain current loop q-axis p-gain current loop alpha observer i-gain current loop alpha observer p-gain current loop beta observer i-gain current loop beta observer p-gain motor sensor coefficient a0 motor sensor coefficient a1 motor sensor coefficient a2 motor sensor coefficient a3 motor sensor minimum temperature motor sensor maximum temperature motor max temperature thermal limit motor start temperature thermal limit motor span temperature

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

5.6.2 Encoder Parameters

Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
ENCODER CONFIGURATION												
encoder_supply	0x2e20	1	no	u08	r/w	5	5	12	V	С	А	1704
encoder_type	0x2e20	2	no	u08	r/w	0	-	5	none	С	А	1705
encoder_number_of_increments	0x2e20	3	no	u32	r/w	1024	1	-	none	С	А	1706
encoder_direction_of_rotation	0x2e20	4	no	u08	r/w	0	-	1	none	С	А	1707
encoder_resolution	0x2e20	5	no	u08	r/w	10	2	31	none	С	А	1708
encoder_ssi_number_bits	0x2e20	6	no	u08	r/w	13	2	32	none	С	А	1709
encoder_ssi_coding	0x2e20	7	no	u08	r/w	0	-	1	none	С	А	1710
encoder_ssi_data_bit_mask	0x2e20	8	no	u32	r/w	0xfffffffc	-	-	none	С	А	1711
encoder_offset	0x2e20	9	yes	s32	r/w	0	-	-	none	С	А	1712
encoder_position	0x2e20	10	yes	s32	r	-	-	-	none	Ν	А	1713
encoder_commutation_position	0x2e20	11	yes	s16	r	-	-	-	none	Ν	А	1714
encoder_set_position	0x2e20	15	no	s32	r/w	-	-	-	none	Ν	А	1718
encoder_eeprom_enable	0x2e20	14	no	u08	r/w	0	-	-	none	С	А	1717

Table 5.14 Encoder Parameter Access Detail

5.7 Commutation Module

The commutation module allows the selection of various commutation methods for the motor phase currents. It is possible to use a resolver, an encoder or a fixed value for the rotor feedback position.

5.7.1 Commutation Configuration

5.7.1.1 Commutation feedback

The selection of the rotor position feedback is done through parameter <u>*commutation feedback*</u> (index 0x2171, subindex 1). It can have the following values:

0 -	commutation with angle zero
1 -	commutation with resolver feedback
2 -	commutation with encoder feedback

5.7.1.2 Commutation with zero angle

When selecting <u>commutation feedback</u>=0 the feedback angle for the rotor position is fixed at zero. This can be used to determine the phase angle between the rotor and the resolver or encoder. When this mode is selected, the current loop gains may have to be reduced to avoid instabilities.

5.7.1.3 Commutation with resolver

When commutation with resolver is selected, the rotor angle is taken from the resolver commutation position *resolver_position*. 16-bit full scale corresponds to one full mechanical revolution. The number of resolver poles *resolver_poles* and the number of motor poles *motor_poles* has to be set to insure proper operation of the drive.

5.7.1.4 Commutation with encoder

If the motor is equipped with an encoder, the commutation is done from the encoder commutation angle <u>encoder commutation position</u>. 16-bit full scale corresponds to one full mechanical revolution. The encoder type and line count have to be set up before. See 'Encoder Module' for further information.

5.7.1.5 Commutation offset

In all commutation types the parameter <u>commutation offset</u> (index 0x2171, subindex 2) contains the offset angle between the commutation feedback and the phase currents. 16-bit full scale corresponds to one full mechanical revolution. When the motor has a resolver or encoder built in that has been adjusted in the factory this angle can be obtained from the motor data. Otherwise it is possible to do an automatic adjustment of this value using the commutation adjustment parameter <u>commutation offset adjustment</u>.

5.7.2 Commutation offset adjustment

To adjust the offset between the commutation feedback and the phase currents the parameter <u>commutation_offset_adjustment</u> can be used. The following steps have to be followed:

- 1. Make sure the rotor can turn freely.
- 2. Initialise correct motor parameters.
- 3. Set *<u>commutation_feedback</u>* (resolver or encoder).
- 4. Set the drive to torque mode. (set parameter *control_loop_mode_requested* (index 0x2581, sub-index 2) to 1301)
- 5. Set <u>commutation offset adjustment</u> to 1 to start the adjustment procedure.
- 6. Enable the drive. The communication adjustment starts.
- 7. Wait until <u>commutation_offset_adjustment</u> reads 0 (after about 2 seconds).

The parameter <u>commutation offset</u> now contains the right value to allow commutation with the feedback device selected. Make sure to save the value to EEPROM.

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

5.7.3 Commutation Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
C	OMMUTATION												
	commutation_feedback	0x2171	1	yes	u08	r/w	1	-	2	none	С	А	1035
	commutation_offset	0x2171	2	yes	s16	r./w	5461	-	-	none	С	А	1036
	commutation_offset_adjustment	0x2171	4	no	u08	r/w	0	1	1	none	Ν	А	1038
C	COMMUTATION RELATED												
	control_loop_mode_requested	0x2581	2	No	S32	r/w	-	-	-	None	Ν	А	1330
	motor_poles	0x6410	1	no	u16	r/w	12	2	-	none	С	А	1072
	resolver_position	0x2210	1	yes	s16	r	-	-	-	none	Ν	A	1057
	encoder_commutation_position	0x2e20	11	yes	s16	r	-	-	-	none	Ν	A	1714

Table 5.15 Commutation Parameter Access Detail

5.8 Position Feedback

The feedback signal for the position loop closure can be derived from the resolver input or the encoder input.

5.8.1 Position Feedback Configuration

5.8.1.1 Position feedback

The selection of the position feedback is done through parameter *position feedback* (index 0x6510, subindex 16). It can have the following values:

1	-	position feedback from resolver
2	-	position feedback from encoder

See 'Resolver Module' and 'Encoder Module' for further information on how to set up resolvers and encoders.

5.8.2 Position feedback parameters

position_feedback

CANopen index	0x6510
CANopen subindex	16
PDO mapping	no
Data type	unsigned 8-bit
Access	read / write
Default value	1
Minimum value	1
Maximum value	2
Storage type	customer settings eeprom
Data group	application parameter
Field number	1168

5.9 Velocity Feedback

The feedback signal for the velocity loop closure can be derived from the resolver input or the encoder input.

5.9.1 Velocity Feedback Configuration

5.9.1.1 Velocity feedback

The selection of the velocity feedback is done through parameter <u>velocity_feedback</u> (index 0x6510, subindex 24). It can have the following values:

1	-	velocity feedback from resolver
2	-	velocity feedback from encoder

See 'Resolver Module' and 'Encoder Module' for further information on how to set up resolvers and encoders.

5.9.2 Velocity feedback parameters

velocity_feedback

CANopen index	0x6510
CANopen subindex	24
PDO mapping	No
Data type	unsigned 8-bit
Access	read / write
Default value	1
Minimum value	1
Maximum value	2
Storage type	customer settings eeprom
Data group	application parameter
Field number	1168

5.10 Digital Input and Output Functional Description

5.10.1 Digital Input Functionality

There are 8 digital inputs on the DS2100, numbered I1 to I8 on the DS2100 front-panel. The first digital input is hardwired to always be used for drive enable, the drive can be enabled when this input is high, and the drive is always disabled when this input is low. This digital input can additionally be configured with a function, but it still retains its hardware enable function as well. The other 7 inputs are user-configurable. The user can configure: -

- Functionality associated with the input (e.g. manual mode input, limit switch input etc.)
- A debounce count, i.e. number of times the input must be seen to be set before functionality is executed
- Invert the logic of the digital input (e.g. if by default manual mode is when input is low can be inverted to occur when input is high).
- Select either edge or level triggering

The parameters associated with inputs are listed below. Note that the names of the parameters are zero-indexed, but that the numbers on the front-panel start at 1: -

Index	Туре	Name						
0x2C2E/1	U08	hardware enable configuration						
0x2C2E/2	U08	hardware_enable_debounce_count						
0x2C2E/3	U08	hardware_enable_invert						
0x2C2E/25	U08	hardware enable control						
0x2C2E/4	U08	digital input 1 configuration						
0x2C2E/5	U08	digital_input_1_debounce_count						
0x2C2E/6	U08	digital input 1 invert						
0x2C2E/26	U08	digital input 1 control						
0x2C2E/7	U08	digital_input_2_configuration						
0x2C2E/8	U08	digital input 2 debounce count						
0x2C2E/9	U08	digital input 2 invert						
0x2C2E/27	U08	digital_input_2_control						
0x2C2E/10	U08	digital_input_3_configuration						
0x2C2E/11	U08	digital input 3 debounce count						
0x2C2E/12	U08	digital input 3 invert						
0x2C2E/28	U08	digital_input_3_control						
0x2C2E/13	U08	digital_input_4_configuration						
0x2C2E/14	U08	digital input 4 debounce count						
0x2C2E/15	U08	digital_input_4_invert						
0x2C2E/29	U08	digital_input_4_control						
0x2C2E/16	U08	digital input 5 configuration						
0x2C2E/17	U08	digital_input_5_debounce_count						
0x2C2E/18	U08	<u>digital_input_5_invert</u>						
0x2C2E/30	U08	digital input 5 control						
0x2C2E/19	U08	digital input 6 configuration						
0x2C2E/20	U08	digital input_6 debounce_count						
0x2C2E/21	U08	digital input 6 invert						
0x2C2E/31	U08	digital input 6 control						
0x2C2E/22	U08	digital input 7 configuration						
0x2C2E/23	U08	digital_input_7_debounce_count						
0x2C2E/24	U08	digital input 7 invert						
0x2C2E/32	U08	digital input 7 control						
$0x^2C^2D/1$	U08	digital input status word						

Table 5.16 List of Digital Input Parameters

5.10.1.1 Digital Input Function Assignment

Setting the digital input configuration entry for the digital input, to the appropriate handler function number, configures the functionality of each input. The table below lists the functions that can be assigned. Only the NULL function can be assigned to more than one digital input. If an attempt is made to map a function twice a mapping error is indicated.

For Edge Triggering:

The handler function is not called repetitively, but rather the handler function is called when: -

- Initially setting up the digital input, when no previous function assigned to the input (i.e first time).
- A transition occurs in the digital input.
- Change the setting of the digital input invert.

• On Power-Up (if configuration has been saved to NVM).

For Level Triggering:

The handler function is called repetitively and also when: -

- Initially setting up the digital input, when no previous function assigned to the input (i.e first time).
- The setting of the digital input invert is changed.
- On Power-Up (if configuration has been saved to NVM).

NOTE :- If digital inputs are already configured, and re-configure the input for a different purpose, do not switch any of the digital inputs, and do not invert any of the digital inputs. The handler function is not called

Handler	Handler Function	Input Set	Input Cleared
0	NULL	-	-
3	Brake Release Switch	Release Brake	Enable Brake
6	Positive Limit Switch	Inactive	Active
7	Negative Limit Switch	Inactive	Active
8	Homing Switch	Active	Inactive
9	Quickstop	Quickstop	-
10	Automatic Manual Mode	Auto. Mode	Manual Mode
11	Controlled Disable	Disable	-
17	CAN Enable/Disable	Disable	Enable
18	CAN Re-enable	Enable	-
19	Re-boot	Re-boot	-

Table 5.17 List of Digital Input Handler Functions

5.10.1.1.1 Brake Release Switch

This handler function releases the brake. The default operation is that setting the digital input (current flowing), will release the brake, and clearing the input will enable the brake. By configuring this digital input, the user takes control of the motor brake. There are two additional parameters that allow configuration of the amount of control the user has over the brake.

brake_control (0x6510/21) configures the brake control in normal operation *brake fault control* (0x6510/18) configures the brake control in a fault condition

The default operation is that input not configured by user. Brake is under Drive control so that on enable the brake is released immediately. On disable or in a fault condition, the brake is applied immediately. (e.g. default is $brake_control = 1$ and $brake_fault_control = 1$)

For full user control of the brake in all conditions including fault conditions and during a Quick Stop set both *brake_control* and *brake_fault_control* to 0 in addition to configuring the digital input function .

5.10.1.1.2 Positive Limit Switch

This handler function is used to configure the input as a positive limit switch. The default operation is that when the input is set the limit switch is inactive. If the input is cleared, and the drive is not performing a homing cycle, the drive will stop. For torque mode operation, torque reference is reduced to zero. For velocity mode operation, the motor is decelerated to zero. For position mode further moves in that direction are prevented. Motion in the opposite direction is possible provided the other limit switch is not also activated. Further movement in the positive direction is prevented, by disabling any torque from being applied in this direction. If the input is cleared, and the

drive is performing a homing cycle, the drive will quickstop, but subsequent moves may occur as part of the homing cycle.

If not in homing mode, the drive can be set up to disable or remain enabled on detection of a limit switch by setting bit 1 of *quickstop_mode* (0x6510/2). If set to 0 then the drive will disable, if set to 1 then the drive will remain enabled.

If the drive is configured to disable on a quick stop by setting bit 1 to 0, the brake is applied (if configured to do so) when the velocity decreases below a programmable level set by *standby_velocity* (0x6510/8). The drive will then disable a programmable time after the brake is applied set by *brake_lock_to_disable_timeout* (0x6510/1).

If the velocity does not decrease below *standby_velocity* within a programmable time set by *velocity_rampdown_time_limit* (0x6510/9), then the drive will disable and the brake will be applied (if configured to do so).

The operation of the brake under a quick stop with disable can be configured to either apply or remain released using the *brake_control* parameter as described in the Brake Release Switch section.

5.10.1.1.3 Negative Limit Switch

This handler function is used to configure the input as a negative limit switch. The default operation is that when the input is set the limit switch is inactive. If the input is cleared, and the drive is not performing a homing cycle, the drive will stop. For torque mode operation, torque reference is reduced to zero. For velocity mode operation, the motor is decelerated to zero. For position mode further moves in that direction are prevented. Motion in the opposite direction is possible provided the other limit switch is not also activated. Further movement in the negative direction is performing a homing cycle, the drive will quickstop, but subsequent moves may occur as part of the homing cycle.

If not in homing mode, the drive can be set up to disable or remain enabled on detection of a limit switch by setting bit 1 of *quickstop_mode* (0x6510/2). If set to 0 then the drive will disable, if set to 1 then the drive will remain enabled.

If the drive is configured to disable on a quick stop by setting bit 1 to 0, the brake is applied (if configured to do so) when the velocity decreases below a programmable level set by *standby_velocity* (0x6510/8). The drive will then disable a programmable time after the brake is applied set by *brake_lock_to_disable_timeout* (0x6510/1). If the velocity does not decrease below *standby_velocity* within a programmable time set by *velocity_rampdown_time_limit* (0x6510/9), then the drive will disable and the brake will be applied (if configured to

The operation of the brake under a quick stop with disable can be configured to either apply or remain released using the *brake_control* parameter as described in the Brake Release Switch section.

5.10.1.1.4 Homing Switch

This handler function is used to configure the input as a homing switch. The homing switch is used is used when certain homing methods are configured. The default operation is that the homing switch is inactive when the input is cleared, and active when the input is set.

5.10.1.1.5 Quickstop

This handler function is used to configure the input as a quickstop input. The default operation is to quickstop the drive if the input is set, i.e. decelerates at a programmable rate. The drive can be set up to disable or remain enabled once the quick stop is complete by setting bit 0 of *quickstop_mode* (0x6510/2). If set to 1 then the drive will disable, if set to 0 then the drive will remain enabled.

do so).

If the drive is configured to disable on a quick stop by setting bit 0 to 1, the brake is applied (if configured to do so) when the velocity decreases below a programmable level set by *standby_velocity* (0x6510/8). The drive will then disable a programmable time after the brake is applied set by *brake_lock_to_disable_timeout* (0x6510/1).

If the velocity does not decrease below *standby_velocity* within a programmable time *velocity_rampdown_time_limit* (0x6510/10) then the drive will disable and the brake applied (if configured to do so).

The operation of the brake under a quick stop with disable can be configured to either apply or remain released using the *brake_control* parameter as described in the Brake Release Switch section.

CAUTION:- the user can program the MANUAL_MODE torque and velocity limits to be higher than the same limits in the AUTOMATIC_MODE. The user should ensure that the correct limits are set-up in the DS2100 software, so that inadvertently limits are not swapped or used incorrectly in either MANUAL or AUTOMATIC states.

5.10.1.1.6 Automatic / Manual Mode

This handler function is used to select between automatic (where normal limits apply) and manual mode (reduced power mode). The default operation is to be in manual mode if the input is cleared (i.e. no current flows), and to be in automatic mode if the input is set. In manual mode, the drive operates with Manual mode torque limit and Manual mode velocity limit. The percentage of max torque and max velocity with which the drives operates is set using *manual_mode_limit* (0x6510 /6) in %. This parameter sets the maximum available torque to a percentage of *current_maximum_physical* (0x2410 /33) and the maximum velocity to a percentage of *velocity_maximum* (0x6510 /28).

5.10.1.1.7 Controlled Disable

This handler function is the same as the quickstop handler listed above, but configured to always disable when quickstop is complete.

5.10.1.1.8 CAN Enable/Disable

This function enables the CAN bus handling if the input is false and disables the CAN bus if the input is true. When the CAN bus is switched from the disabled to the enabled state there is a full initialisation of the CAN protocol.

5.10.1.1.9 CAN Re-Enable

This function will enable the CAN bus handling if the input is true. When the CAN bus is switched from the disabled to the enabled state there is a full initialisation of the CAN protocol.

5.10.1.1.10 Re-Boot

When the input is true this function will force the drive to restart.

5.10.1.2 Digital Input Debounce Count

The count for all digital input is by default set to 1. The digital inputs are checked at a fixed rate (every 2ms). By setting the count to a higher value, the handler function will only be called, when the input is seen to have settled at a level, for the defined number of counts, each time it is checked.

5.10.1.3 Digital Input Invert Input

This parameter invert the logic associated with a digital input handler function. Default operation for each handler function was listed earlier. If the invert option is set, it will invert this logic. By default the invert option is not set.

For example, the default operation of the automatic/manual input is to set the drive into manual mode if the input is cleared, and into automatic mode if the input is set. By setting the invert parameter for this input, it will set the drive into automatic mode if the input is cleared, and into manual mode if the input is set.

5.10.1.4 Digital Input Status Word

The digital input status word shows the state of the 8 bits of the digital input word. The LSB corresponds to I1, and the MSB corresponds to I8. A bit is shown as 1, if the digital input is set, and shown as 0, if the digital input is cleared. This is the case regardless of the invert option being set.

5.10.2 Digital Output Functionality

There are 3 digital outputs on the DS2100, numbered O1 to O3 on the DS2100 front-panel. All 3 outputs are user-configurable. The user can configure: -

- The bits within a specific parameter that is to be associated with the digital output. This is performed by setting the parameter field number and a mask to select specific bits.
- Invert the logic of the digital output, such that if the selected bit is set, the output is cleared and vice versa.

The parameters associated with outputs are listed below. Note that the names of the parameters, and the numbers on the front-panel both start at 1: -

Index	Туре	Name
0x2C2C/1	U16	digital output 1 field number
0x2C2C/2	U32	digital_output_1_mask
0x2C2C/3	U08	digital output 1 invert
0x2C2C/4	U16	digital output 2 field number
0x2C2C/5	U32	digital output 2 mask
0x2C2C/6	U08	<u>digital_output_2_invert</u>
0x2C2C/7	U16	digital output 3 field number
0x2C2C/8	U32	digital_output_3_mask
0x2C2C/9	U08	digital_output_3_invert

Table 5.18 List of Digital Output Parameters

5.10.2.1 Digital Output Field and Mask

The user must define specific bits within a specific parameter, which is to be associated with a digital output. The Field value of the parameter (i.e. a unique number identifying a specific parameter) must be entered into the digital output field number parameter, to specify the parameter of interest. This field number is listed in the parameter database, in the utilities panel of the GUI.

The bits within the field are specified by entering the appropriate mask into the digital ouptut mask parameter. This mask is ANDed with the parameter specified by the field number to determine the digital output state.

For example, Bit 7 of the DS402 status word indicates a warning on the drive. If <u>digital_output_1_field_number</u> is set to the field value of the *DS402_status_word* parameter (i.e. 1651), and <u>digital_output_1_mask</u> is set to 0x80, then digital output 1 will be 0 in when no warnings are present, and will be 1 when a warning occurs.

The mask can select a number of bits in a parameter. If any of these bits are set, then the digital output will be 1, otherwise the output will be 0.

5.10.2.2 Digital Output Invert Output

In a similar manner to the digital inputs, this parameter inverts the logic associated with a digital output. Default operation is that if the bit is set in the parameter the output is set to 1, and when the bit is cleared the output is set to 0. If the invert option is set, it will invert this logic, such that clearing the bit will set the digital output to 1 and vice versa.

5.10.2.3 Default Settings

The default setting for digital output 1 is for the output to be set high when the drive is enabled. The default setting for digital output 2 is for the output to be set high when self-protection current limiting is active. The default setting for digital output 3 is for no output.

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

5.10.3 Digital I/O Parameters

Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
DIGITAL INPUT												
hardware enable configuration	0x2C2E	1	no	u08	r/w	0	-	-	none	С	Α	1545
hardware enable debounce count	0x2C2E	2	no	u08	r/w	1	-	254	none	С	Α	1546
hardware enable invert	0x2C2E	3	no	u08	r/w	0	-	1	none	С	Α	1660
hardware enable control	0x2C2E	25	по	u08	r/w	0	-	-	none	С	Α	1672
digital input 1 configuration	0x2C2E	4	no	u08	r/w	0	-	-	none	С	Α	1547
digital input 1 debounce count	0x2C2E	5	no	u08	r/w	1	-	254	none	С	A	1548
digital input 1 invert	0x2C2E	6	no	u08	r/w	0	0	1	none	С	A	1661
digital input 1 control	0x2C2E	26	no	u08	r/w	0	-	-	none	С	Α	1673
digital input 2 configuration	0x2C2E	7	no	u08	r/w	0	-	254	none	С	Α	1549
digital input 2 debounce count	0x2C2E	8	no	u08	r/w	1	-	-	none	С	Α	1550
digital input 2 invert	0x2C2E	9	no	u08	r/w	0	0	1	none	С	Α	1662
digital input 2 control	0x2C2E	27	no	u08	r/w	0	-	-	none	С	Α	1674
digital input 3 configuration	0x2C2E	10	no	u08	r/w	0	-	-	none	С	Α	1551
digital input 3 debounce count	0x2C2E	11	no	u08	r/w	1	-	254	none	С	Α	1552
digital input 3 invert	0x2C2E	12	no	u08	r/w	0	0	1	none	С	Α	1663
digital input 3 control	0x2C2E	28	no	u08	r/w	0	-	-	none	С	Α	1675
digital input 4 configuration	0x2C2E	13	no	u08	r/w	0	-	-	none	С	Α	1553
digital input 4 debounce count	0x2C2E	14	no	u08	r/w	1	-	254	none	С	Α	1554
digital input 4 invert	0x2C2E	15	no	u08	r/w	0	0	1	none	С	Α	1664
digital input 4 control	0x2C2E	29	no	u08	r/w	0	-	-	none	С	Α	1676
digital input 5 configuration	0x2C2E	16	no	u08	r/w	0	-	-	none	С	Α	1555
digital input 5 debounce count	0x2C2E	17	no	u08	r/w	1	-	254	none	С	Α	1556
digital input 5 invert	0x2C2E	18	no	u08	r/w	0	0	1	none	С	Α	1665
digital input 5 control	0x2C2E	30	no	u08	r/w	0	-	-	none	С	Α	1677
digital input 6 configuration	0x2C2E	19	no	u08	r/w	0	-	-	none	С	Α	1557
digital input 6 debounce count	0x2C2E	20	no	u08	r/w	1	-	254	none	С	Α	1558

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

DS2100 User's Manual

]	<u>digital input 6 invert</u>	0x2C2E	21	no	u08	r/w	0	0	1	none	С	Α	1666
	<u>digital_input_6_control</u>	0x2C2E	31	no	u08	r/w	0	-	-	none	С	Α	1678
	digital input 7 configuration	0x2C2E	22	no	u08	r/w	0	-	-	none	С	Α	1559
1	digital input 7 debounce count	0x2C2E	23	no	u08	r/w	1	-	254	none	С	Α	1560
	digital input 7 invert	0x2C2E	24	no	u08	r/w	0	0	1	none	С	Α	1667
	digital input 7 control	0x2C2E	32	no	u08	r/w	0	-	-	none	С	Α	1679
	digital input status word	0x2C2D	1	yes	u08	r	-	-	-	none	Ν	Α	1542
E	BRAKE RELEASE												
	brake_control	0x6510	21	no	u16	r/w	1	-	-	none	С	А	1603
	brake_fault_control	0x6510	18	no	u16	r/w	1	-	-	none	С	А	1505
(UICKSTOP												
	quickstop_mode	0x6510	2	no	u08	r/w	1	-	-	none	С	А	1013
	standby_velocity	0x6510	8	no	f32	r/w	1	0.05	1000	rad/s	С	Α	1138
	brake_lock_to_disable_timeout	0x6510	1	no	f32	r/w	0.1	0	5	S	С	Α	1004
	velocity_rampdown_time_limit	0x6510	9	no	f32	r/w	1	0	1000	S	С	Α	1143
A	AUTOMATIC/MANUAL												
	manual_mode_limit	0x6510	6	no	f32	r/w	10	0	100	%	С	А	1133
	current_maximum_physical	0x2410	33	no	f32	r	-	-	-	А	Ν	А	1124
	motor_max_velocity	0x6410	10	no	f32	r	-	-	-	rad/s	Ν	А	1085
Γ	DIGITAL OUTPUT												
	digital_output_1_field_number	0x2C2C	1	no	u16	r/w	1544	-	-	none	С	Α	1561
	<u>digital output 1 mask</u>	0x2C2C	2	no	u32	r/w	0x80	-	-	none	С	Α	1562
	digital output 1 invert	0x2C2C	3	no	u08	r/w	0	0	1	none	С	А	1563
1	digital output 2 field number	0x2C2C	4	no	u16	r/w	1132	-	-	none	С	А	1564
1	digital output 2 mask	0x2C2C	5	no	u32	r/w	0xD	-	-	none	С	А	1565
	digital output 2 invert	0x2C2C	6	no	u08	r/w	0	0	1	none	С	A	1566
1	digital output 3 field number	0x2C2C	7	no	u16	r/w	1542	-	-	none	С	Α	1567
1	digital output 3 mask	0x2C2C	8	no	u32	r/w	0	-	-	none	С	A	1568
1	digital output 3 invert	0x2C2C	9	no	u08	r/w	0	0	1	none	С	A	1569

Table 5.19 Digital I/O Parameter Access Detail

5.11 Control Loops

There are three loops that can be closed by DS2100, depending on the mode of operation of the drive. These torque, velocity and position loops are nested inside each other, with the output of each compensator, being the reference for the next inner loop.

- In torque mode only the torque/current loop is closed, with a torque set-point or demand selected by the user.
- In velocity mode, the velocity compensator output is input to the current loop, with a velocity demand set by the user.
- In position mode, the position compensator output is input to the velocity loop, with the velocity compensator output in turn input to the current loop. Again the user sets the position demand.

The diagram below shows the overall control loop structure.

Figure 5.4 : Overall Drive Control Loop Structure

The following sections of the manual will describe in more detail each of the blocks listed above, beginning from left to right.

5.11.1 Position Loop Compensator

5.11.1.1 PI Compensator

The outer most loop is the position loop. Two options exist for the position compensator. These are a PI compensator; or a Time-optimal compensator.

The PI compensator has a structure as shown in the diagram below: -

Figure 5.5 : Position Loop PI Compensator Structure

The output of the compensator is limited to *motvelliminc*, a term derived from the motor_max_velocity (0x6410/10) parameter. The compensator also implements anti-windup for the compensator's integrator. The PI compensator has the gains as listed below.

Index	Name	Туре	Units
0x60FB/2	position PI loop p-gain	f32	1/s
0x60FB/3	position PI loop i-gain	f32	$1/s^2$

Table 5.20 I	List of Position	Loop PI Com	pensator Gains
--------------	------------------	-------------	----------------

Index	Name	Туре	Units
0x60FB/4	position PI loop error	f32	increments
0x6510/3	internal loop demand	f32	increments.
0x6510/13	velocity_command_acceleration_limited	f32	incs/Tsamp

Table 5.21 Position Loop PI Compensator Read-only Parameters

5.11.1.2 Time-Optimal Compensator

The time-optimal compensator is a non-linear compensator that uses a square root function of the position error, to give optimal deceleration performance.

The position error is scaled by parameter thermal_limit_factor (0x280A 1) to give a scaled position error (i.e. thermal_limit_factor is 1 when no limiting, <1 when limiting),. Dependent on the size (i.e. absolute) of this scaled position error, the output of the compensator will have a linear relationship to the scaled position error, for small position errors, OR will have a square root relationship for larger errors. The cut-off point between the linear and square root relationship depends on $Ka / (Kp^2)$.

MOOG DS2100 User's Manual

In addition, if the absolute value of the position error of the axis is smaller than a programmable limit (*position_TO_enable_velocity_integrator*), then the I part of the velocity compensator, used when in position mode, must be enabled to overcome friction i.e.: -

Abs(*position error*) <= *limit* => *Activate the I-Term in the velocity compensator.*

The compensator has a structure as shown below.

Figure 5.6 : Position Loop Time Optimal Compensator Structure

The time-optimal position compensator has gains as listed below.

Index	Name	Туре	Units
0x60FB/6	position TO loop a-gain	f32	rad/s ²
0x60FB/7	position_TO_loop_p-gain	f32	1/s
0x60FB/8	<pre>position_TO_loop _enable_velocity_i-term</pre>	f32	rad

Table 5.22 List of Position	Loop Tir	ne Optimal	Compensator	Gains
-----------------------------	----------	------------	-------------	-------

Index	Name	Туре	Units
0x60FB/5	position TO loop error	f32	increments
0x6510/3	internal_loop_demand	f32	increments.
0x6510/13	velocity_command_acceleration_limited	f32	incs/Tsamp

 Table 5.23 Position Loop TO Compensator Read-only Parameters

5.11.1.3 Velocity compensator (when in position mode)

When in position mode, the position compensator output is a velocity command, which is input to a PI velocity compensator, to produce the torque demand. Note that the velocity compensator used in position mode is separate to that used in velocity mode, thus allowing different gains to be used in velocity mode to position mode. The PI velocity loop compensator structure is shown below, where *vcmdsav* is the acceleration limited velocity command, in incs/Tsamp. *Velf* is the filtered actual velocity, and *iqdv* is the compensator output, or torque command.: -

DS2100 User's Manual

Figure 5.7 : Velocity Loop (When in position mode) Compensator Structure

The output of this compensator is limited to \pm *current_max* (0x60F7/3), since it is used subsequently as a demand for the current loop. The compensator has parameters are listed below:

Index	Name	Туре	Units
0x60F9/2	position_mode_velocity_loop_p-gain	f32	Nm/rad/s
0x60F9/3	position_mode_velocity_loop_i-gain	f32	Nm/rad

Table 5.24 List of Positio	n Loop's Velocity	Loop Compensator Gains

Index	Name	Туре	Units
0x60F9/4	position_mode_velocity_loop_error	f32	incs/Tsamp
0x6510/15	velocity_filtered	f32	incs/Tsamp
0x60F7/10	current_demand_velocity_comp_output	f32	Amps.
0x60F7/3	current_max	f32	Amps

Table 5.25 List of Position Loop's Velocity Loop Read-only Parameters

5.11.1.4 Position Loop Tuning

TBA

5.11.2 Velocity Loop compensator

In velocity mode, the velocity compensator is an I-PI configuration, and has the structure as shown below: -

Figure 5.8 : Velocity Loop (When in velocity mode) Compensator Structure

The output of this compensator is limited to $\pm imax$, and these limit's can be read using the upper and lower limit parameters of the compensator. The I-PI velocity loop compensator has gains as listed below.

Index	Name	Туре	Units
0x60F9/5	velocity_mode_p-gain	f32	Nm/rad/s
0x60F9/6	velocity mode i-gain	f32	Nm/rad
0x60F9/7	velocity mode ie-gain	f32	none

Table 5.26 List of Velocity Loop Co	ompensator Gains
-------------------------------------	------------------

Index	Name	Туре	Units
0x60F9/8	velocity_mode_error	f32	incs/Tsamp
0x6510/15	velocity filtered	f32	incs/Tsamp
0x60F7/10	current demand velocity comp output	f32	Amps.

Table 5.27 List of Velocity Loop Read-only Parameters

5.11.2.1 Velocity Loop Sample Rate

The velocity loop sample period can be set to any multiple of the current loop sample period (~100us) using the parameter <u>velocity loop rate divider</u> (0x60F9/1).

5.11.2.2 Acceleration/Deceleration limiting

The acceleration/deceleration limiting is performed on the velocity command. In position control mode this is the output of the position compensator.

The acceleration limiting parameter is <u>acceleration_limit</u> (0x6510/18), and has units of rad/s².

The deceleration limit can be set separately from the acceleration limit. The deceleration limiting parameter is deceleration limit (0x6510/23), and has units of rad/s².

The deceleration limits for fault mode and for quickstop can be set separately from the normal deceleration limit. The fault mode deceleration limiting parameter is deceleration limit - fault (0x6510/26), and has units of rad/s².

The quickstop mode deceleration limiting parameter is <u>deceleration limit</u> - <u>quickstop</u> (0x6510/25), and has units of rad/s².

Note that writing to the acceleration limit has the effect of setting all of the deceleration limits to the same value as the acceleration limit, so if a deceleration limit is required to be different then it must be written after the acceleration limit.

Note that writing to the deceleration limit has the effect of setting all of the deceleration limits to the same value as the deceleration limit, so if either the fault or quickstop deceleration limit is required to be different then it must be written after the deceleration limit.

The velocity command input to the acceleration-limiting block is *velocity_command* (0x6510/12). The output of the acceleration-limiting block is *velocity_command_acceleration_limited* (0x6510/13). These may both be monitored using the GUI scope to view the effect of acceleration limiting.

These velocity terms have embedded units of "increments/(velocity loop sample period)" and can be converted to rad/s using the expression (where vcmdsav = *velocity_command_acceleration_limited*),

velocity command
$$(rad / s) = \frac{2\pi}{2^{16}} \frac{swifrq}{veldiv} vcmdsav$$

This expression can also be used to convert velocity (0x6510/10), and velocity_filtered (0x6510/15) to rad/s.

5.11.2.3 Velocity Limiting

There are several ways in which the velocity is limited. These are listed below: -

- 1. The parameter <u>velocity maximum</u> (0x6510/28) sets the maximum value for the velocity command. This value is stored in NVM.
- 2. The parameter *velocity_limit* (0x6510/30) can be used to limit the velocity temporarily to some value less than the maximum velocity. This parameter can be used in real-time messages, but is not stored to NVM.
- 3. The velocity of the drive is reduced when in manual mode. This reduces the velocity of the drive to a percentage (default is 10%) of the max velocity. This functionality is outlined earlier in the digital input section of the manual.
- 4. The velocity of the drive is also reduced/controlled when in torque mode. There is no velocity loop when in torque mode so the following method is applied. A linear de-rating of the torque applied to the motor is implemented when the velocity of the drive exceeds the velocity limit of the drive (i.e. limit in either manual or automatic mode). The de-rating is such that the demand torque is applied when at the velocity limit, but that torque is reduced to zero, when at 5% above the velocity limit. The de-rating gives a smoother profile, than simply zeroing torque if the velocity limit is exceeded. The diagram below show the implementation: -

Figure 5.9 : Velocity limiting when in Torque Mode

5.11.2.4 Velocity Loop Filter

The generic filter has 9 programmable parameters. Therefore, it may be configured as hi-pass, low-pass, band-pass or band-stop, to allow for maximum flexibility. The output of the velocity compensator becomes the input to the generic filter, denoted by *current_demand_velocity_comp_output*. The output of the generic filter is *current_demand_generic_filter_output* (0x60F7/11). These two parameters may be monitored on the GUI scope to view the filter activity in real time. The filter may be included/excluded by setting/clearing the appropriate bit in the control loop configuration (see section 5.11.4)

<u>NOTE</u>: The default filter operating period is *velocity_loop_rate_divider / switching_frequency* = 4/9920 = (approx 400 µs).

The Generic filter that is implemented is listed below, where yf(k) is the filter output, and y(k) is the filter input at a particular sample instant k.

$$yf(k) = -(a_1 \times yf(k-1) + a_2 \times yf(k-2) + a_3 \times yf(k-3) + a_4 \times yf(k-4)) + (b_0 \times y(k) + b_1 \times y(k-1) + b_2 \times y(k-2) + b_3 \times y(k-3) + b_4 \times y(k-4))$$

The filter has the following set of parameters: -

Index	Name	Туре
0x25C1/1	velocity_loop_filter_coefficient_a1	F32
0x25C1/2	velocity loop filter coefficient a2	F32
0x25C1/3	velocity loop filter coefficient a3	F32
0x25C1/4	velocity_loop_filter_coefficient_a4	F32
0x25C1/5	velocity loop filter coefficient b0	F32
0x25C1/6	velocity loop filter coefficient b1	F32
0x25C1/7	velocity_loop_filter_coefficient_b2	F32
0x25C1/8	velocity_loop_filter_coefficient_b3	F32
0x25C1/9	velocity loop filter coefficient b4	F32
0x25C1/	velocity_loop_mode	F32
10		

Table 5.28 List of Filter Parameters

The mode parameter determines the number of multiplications used to compute the filter output. If *velocity_loop_filter_mode* is set to 1, then only parameters b0, b1, b2, a1, a2 are used to compute the filter output. This configuration is consistent with a second order low-pass or high-pass butterworth digital filter.

If *velocity_loop_filter_mode* is set to 2, then all 9 parameters are used to compute the filter output. This configuration is consistent with a second order band-pass or band-stop butterworth digital filter.

Naturally, lower order filter designs are allowed. For example, a first order filter. But in this case the unused parameter must be set to zero.

5.11.2.4.1 Low-pass filter

For example the coefficients of a second order low-pass butterworth filter with a cut-off frequency of 0.1 time's half the sampling frequency, can be determined as being: -

 $b_0 \dots b_2 = 0.02008336556421 \quad 0.04016673112842 \quad 0.02008336556421$ $a_0 \dots a_2 = 1.000000000000 \quad -1.56101807580072 \quad 0.64135153805756$

If the velocity loop rate modulus is 4 and the switching frequency parameter is 9920Hz, Then, the velocity loop sample rate is 400 μ s approximately (= 2.5KHz approx).

Hence, the 0.1 filter factor means that the low-pass filter cut-off is 0.1*(Fs/2) = 0.1*(2.5KHz/2) = 125Hz.

Setting the filter coefficient parameters of the filter accordingly and setting the mode to 1, will implement this filter, in the drive. Note that parameter a0 is always 1.0.

5.11.2.4.2 Band-stop filter (Notch)

The coefficients of a second order band-stop butterworth filter with a notch between 0.1 time's half the sampling frequency, and 0.2 time's half the sampling frequency, can be determined as being: -

If the velocity loop rate modulus is 4 and the switching frequency parameter is 9920Hz, Then, the velocity loop sample rate is 400 μ s approximately (= 2.5KHz approx).

Hence, the notch entry cut-off is: -	0.1*(Fs/2) = 0.1*(2.5KHz/2) = 125Hz.
And, the notch exit cut-off is: -	0.2*(Fs/2) = 0.2*(2.5KHz/2) = 250Hz.

Setting the filter coefficient parameters of the filter accordingly and setting the mode to 2, will implement this filter, in the drive. Note that parameter a0 is always 1.0.

5.11.2.5 Velocity feedback filter

A low-pass first order filter is also included on the motor feedback velocity. The feedback velocity is held in the parameter *velocity_actual* (0x6510/10), with the low-pass filtered velocity held in a parameter called *velocity_filtered* (0x6510/15). It is this filtered velocity variable that is used to close the velocity loop.

The filter is not a Butterworth, but instead, is a simple Euler approximation filter, characterised by two filter coefficients. The filter cut-off is specified with a filter cut-off factor (FCF), held in a parameter called *velocity_filter_cutoff_factor velocity_filter_cutoff_factor* (0x6510/14). The two filter coefficients (a_1 and b_0) are computed in the embedded software each time the user writes to the cut-off factor

 $\begin{array}{l} a_1 = 1 \ / \ (1 + 2 \ast \pi \ast \ velocity_filter_cutoff_factor); \\ b_0 = 2 \ast \pi \ast velocity_filter_cutoff_factor \ / \ (1 + 2 \ast \pi \ast \ velocity_filter_cutoff_factor); \end{array}$

Setting *velocity_filter_cutoff_factor* to 0.5 sets the filter cut-off to half the velocity loop sample rate. Hence, the default speed cut-off factor of 0.25 will set the filter cut-off to 625Hz, when the velocity sample rate is 2.5KHz.

5.11.2.6 Velocity LoopTuning

TBA

5.11.3 Current / Torque Loop Compensator

The inner most loop is the current or torque loop. The current loop tuning gains are computed from a Matlab simulation. This uses time domain continuous time analysis to compute the Laplace domain gains for the current controller. These are then mapped to the discrete domain using a standard pole placement algorithm. A default set of current loop parameters will be held in the GUI motor database for all standard motors. The general current loop control structure, along with parameter names are illustrated below. The parameters indicated are accessible to the user, and can be plotted on the GUI oscilloscope if required.

Figure 5.10 : General Current Loop Structure

5.11.3.1 Current Loop Components

The current control consists of a pair of compensators, one for the q-axis current control, and the other for d-axis current control. The feedback currents <u>current q-axis observer</u> and <u>current d-axis observer</u> are output from the predictive current state observers. The predictive observer is used by default for improved performance, by setting the OBSERVER bit in the mode request of the drive. The actual q-axis current <u>current actual</u>, is computed directly

from the sampled phase A and phase B motor currents *current_phase_A_feedback*, *current_phase_B_feedback*, respectively.

For close inspection of torque, the observer predicted <u>current_q-axis_observer</u>, or the actual q-axis feedback, <u>current_actual</u>, can be monitored using the GUI's oscilloscope, as can any of the parameters listed below.

Figure 5.11 : d,q current compensator

Gain calibration parameters can be used to back off the current loop gain at high currents to enable the use of motors with high saturation. The <u>current loop foldback breakpoint</u> sets the current at which the current loop gain starts to reduce and <u>current loop foldback minimum</u> sets the fraction of the gain to be used at maximum current. The gains are decreased linearly between the <u>current loop foldback breakpoint</u> and the maximum current. The current loop d and q axis <u>compensators</u> gains, and the observer α and β <u>compensators</u> tuning gains are summarised in the table below.

Index	Name	Туре	Units	Comment
0x60F6/1	current_loop_d-axis_i-gain	f32	Volts/Amp/Tsamp	dcomp.igain
0x60F6/2	current_loop_d-axis_p-gain	f32	Volts/Amp	dcomp.pgain
0x60F6/3	current loop q-axis i-gain	f32	Volts/Amp/Tsamp	qcomp.igain
0x60F6/4	current_loop_q-axis_p-gain	f32	Volts/Amp	qcomp.pgain
0x60F6/9	current_loop_alpha_observer_i-gain	f32	Volts/Amp/Tsamp	oacomp.igain
0x60F6/10	current loop alpha observer p-gain	f32	Volts/Amp	oacomp.pgain
0x60F6/11	current loop beta observer i-gain	f32	Volts/Amp/Tsamp	obcomp.igain
0x60F6/12	current_loop_beta_observer_p-gain	f32	Volts/Amp	obcomp.pgain
0x60F6/5	current loop foldback minimum	f32	none	calkmin

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

DS2100 User's Manual

0x60F6/6	current_loop_foldback_breakpoint	f32	Amp	calimin

Table 5.29 List of Current Loop Compensator Gains

The table below lists parameter or signals that can be monitored by the GUI, and can be useful during loop tuning.

Index	Name	Туре	Units	Comment
0x60F7/4	current_d-axis_observer	f32	Amps	id
0x60F7/5	current q-axis observer	f32	Amps	iq
0x60F7/6	current_d-axis_demand	f32	Amps	idd
0x60F7/7	current_q-axis_demand	f32	Amps	iqd
0x2410/13	current phase A demand	s16	Amps	iad
0x2410/14	current_phase_B_demand	s16	Amps	ibd
0x2210/14	current_phase_A_feedback	s16	see note 1	dspias
0x2210/15	current phase B feedback	s16	see note 1	dspibs
0x60F6/6	current loop q-axis error	f32	Amps	qcomp.error
0x60F6/7	current_loop_d-axis_error	f32	Amps	dcomp.error
0x60F6/13	current loop alpha observer error	f32	Amps	oacomp.error
0x60F6/14	current loop beta observer error	f32	Amps	obcomp.error
0x60F7/9	current_actual	f32	Amps	iqact

Table 5.30 List of Current Loop Signal Parameters

WARNING - DANGER OF UNCONTROLLED MOTOR ACCELERATION

The DS2100 has specialised motor current compensation. For optimum performance the DS2100 operates a software model of the current loop. The correct motor electrical parameters are required for this software model. Large errors in the motor parameters can result in uncontrolled motion.

Small torque commands can result in a continuous motor acceleration. The velocity of the motor can increase in an uncontrolled way if no counter-balancing torque is present. The user's control system should ensure that the speed of the motor is monitored, and that a compensating torque command is applied to control the motor speed if necessary.

5.11.3.2 Motor Velocity Loop Sample Rate

The motor velocity loop sample period can be set to any multiple of the current loop sample period (~100us) using the parameter <u>motor_velocity_loop_rate_divider</u> (0x60F6/15).

5.11.3.3 Motor Velocity feedback filter

A low-pass first order filter is also included on the motor feedback velocity. The motor feedback velocity is held in the parameter *motor_velocity_actual* (0x60F6/16), with the low-pass filtered velocity held in a parameter called *motor_velocity_filtered* (0x60F6/18). It is this filtered velocity variable that is used to limit the motor velocity.

The filter is a simple Euler approximation filter, characterised by two filter coefficients. The filter cut-off is specified with a filter cut-off factor (FCF), held in a parameter called <u>motor velocity filter cutoff factor</u> (0x60F6/17). The two filter coefficients (a_1 and b_0) are computed in the embedded software each time the user writes to the cut-off factor

 $\begin{array}{l} a_1 = 1 \ / \ (1 + 2^*\pi^* \ motor_velocity_filter_cutoff_factor); \\ b_0 = 2^*\pi^* motor_velocity_filter_cutoff_factor \ / \ (1 + 2^*\pi^* \ motor_velocity_filter_cutoff_factor); \end{array}$

Setting *motor_velocity_filter_cutoff_factor* to 0.5 sets the filter cut-off to half the motor velocity loop sample rate. Hence, the default motor speed cut-off factor of 0.25 will set the filter cut-off to 625Hz, when the velocity sample rate is 2.5KHz.

5.11.3.4 Motor Velocity Limiting

The *motor_max_velocity* (0x6410/8) is set as one of the motor parameters, when a drive is configured for use with a particular motor.

A linear de-rating of the torque applied to the motor is implemented when the velocity of the drive exceeds the motor max velocity. The de-rating is such that the demand torque is applied when at the velocity limit, but that torque is reduced to zero, when at 5% above the velocity limit. The de-rating gives a smoother profile, than simply zeroing torque if the velocity limit is exceeded.

5.11.3.5 Field Weakening

The field weakening function extends the torque-speed performance of the drive/motor combination. There are two parameters available to configure the field weakening performance, but in general these parameters can be left at their default values.

current_scaling_factor_field_weakening (0x2410/24) is the fraction of the maximum current used in the field weakening algorithm.

field_weakening_vmax_scaling_factor (0x2450/3) is the fraction of the maximum bus voltage used in the field weakening algorithm to allow for bus voltage variation due to dead-time compensation, on-state voltage drop, acceleration effects, etc.

WARNING - DANGER OF REDUCED DRIVE MONITORING FUNCTIONALITY AND/OR INTERMITTENT SOFTWARE WATCHDOG TIMEOUT

The DS2100 cannot be guaranteed to run with field weakening enabled when the profile generator is also enabled and by extension the drive <u>cannot</u> be operated in the DS402 profile position mode while field weakening is enabled. If field weakening is enabled then the parameter *profile generator bypass switch*

(0x2E40/0) must be set to 0 (default value is 1) and profile position mode not used.

5.11.3.6 Current Loop Tuning

TBA

5.11.4 Control Loop Configuration

The control loops are configured by setting/unsetting bits in an internal mode request to switch in/out the various control loop elements. The mode request can be configured for each of the modes of operation: position, velocity and torque, by setting the appropriate mode preset parameter.

The table below describes the bits that can be set in the mode request to configure the control loops:

NOTE: Any bit defined as a value (1 or 0) must be always set to that value.

BIT	Definition
31 (MSB)	0
30	0
29	0
28	0
27	0
26	0
25	0
24	0
23	0
22	0
21	0
20	0
19	0
18	0
17	0
16	0
15	1
14	0
13	0
12	0
11	0
10	acceleration limiting enable
9	command micro-interpolation
8	gain calibration
7	time-optimal position loop enable (otherwise PI loop)
6	position mode
5	field weakening enable
4	observer enable
3	generic filter enable
2	0
1	velocity mode
0 (LSB)	torque mode

Table 5.31 mode request bit definitions

5.11.4.1 Torque Mode Preset

The parameter <u>control loop torque mode preset</u> (0x2581 /6) sets the mode request when a torque control mode is requested. The default value for this parameter is 33041 (8111 hex) indicating that bits 0, 4, 8 and 15 are set. Note that the bit 0 must always be set in this parameter, bits 1 and 6 must never be set and bits 3, 7 and 10 have no meaning in torque mode.

5.11.4.2 Velocity Mode Preset

The parameter <u>control loop velocity mode preset</u> (0x2581/6) sets the mode request when a velocity control mode is requested. The default value for this parameter is 34586 (871A hex) indicating that bits 1, 3, 4, 8, 9, 10 and 15 are set.

Note that the bit 1 must always be set in this parameter, bits 0 and 6 must never be set and bit 7 has no meaning in velocity mode.

5.11.4.3 Position Mode Preset

The parameter <u>control_loop position_mode_preset</u> (0x2581/6) sets the mode request when a position control mode is requested. The default value for this parameter is 34776 (87D8 hex) indicating that bits 3, 4, 6, 7, 8, 9, 10 and 15 are set.

Note that the bit 1 must always be set in this parameter, bits 0 and 1 must never be set in position mode.

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

5.11.5 Control Loop Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
P	OSITION PI COMPENSATOR												
	position PI loop p-gain	0x60FB	2	no	f32	r/w	2.0	0	-	1/s	С	Α	1326
I	position PI loop i-gain	0x60FB	3	no	f32	r/w	0	0	-	$1/s^2$	С	А	1327
I	position PI loop error	0x60FB	4	yes	f32	r	-	-	-	increments	Ν	А	1328
	internal loop demand	0x6510	3	yes	f32	r	-	-	-	increments	Ν	А	1034
	velocity command acceleration limited	0x6510	13	yes	f32	r	-	-	-	incs/Tsamp	Ν	А	1157
P	OSITION TO COMPENSATOR												
	position_TO_loop_a-gain	0x60FB	6	no	f32	r/w	1000	0	-	rad/s ²	С	Α	1340
	position_TO_loop_p-gain	0x60FB	7	no	f32	r/w	20	0	-	1/s	С	Α	1342
	<pre>position_TO_loop_enable_velocity_integrator</pre>	0x60FB	8	no	f32	r/w	6.28	0	6.28	rad	С	А	1350
	position_TO_loop_error	0x60FB	5	yes	f32	r	-	-	-	increments	Ν	Α	1337
	internal_loop_demand	0x6510	3	yes	f32	r	-	-	-	increments	Ν	Α	1034
	velocity_command_acceleration_limited	0x6510	13	yes	f32	r	-	-	-	incs/Tsamp	Ν	Α	1157
P C	POSITION MODE VELOCITY COMPENSATOR												
	position_mode_velocity_loop_p-gain	0x60F9	2	no	f32	r/w	0.05	0	-	Nm/rad/s	С	Α	1305
	position mode velocity loop i-gain	0x60F9	3	no	f32	r/w	2.0	0	-	Nm/rad	С	Α	1306
	position mode velocity loop error	0x60F9	4	yes	f32	r	-	-	-	incs/Tsamp	Ν	Α	1307
	velocity filtered	0x6510	15	yes	f32	r	-	-	-	incs/Tsamp	Ν	Α	1165
	current demand velocity comp output	0x60F7	10	yes	f32	r	-	-	-	Amps.	Ν	Α	1120
	<u>current max</u>	0x60F7	3	yes	f32	r	-	-	-	Amps	Ν	Α	1093
V	/ELOCITY MODE COMPENSATOR												
	velocity_mode_p-gain	0x60F9	5	no	f32	r/w	0.05	0	-	Nm/rad/s	С	Α	1317
	velocity_mode_i-gain	0x60F9	6	no	f32	r/w	2	0	-	Nm/rad	C	A	1318
	velocity_mode_ie-gain	0x60F9	7	no	f32	r/w	0	0	-	none	C	A	1319
	velocity_mode_error	0x60F9	8	yes	f32	r	-	-	-	incs/Tsamp	Ν	Α	1320
	velocity_filtered	0x6510	15	yes	f32	r	-	-	-	incs/Tsamp	N	A	1165
	current_demand_velocity_comp_output	0x60F7	10	yes	f32	r	-	-	-	Amps.	Ν	А	1120

DS2100 User's Manual

A	ACCELERATION LIMITING												
	acceleration_limit	0x6510	17	no	f32	r/w	1000000	0	-	rad/s ²	С	Α	1335
	deceleration_limit	0x6510	23	no	f32	r/w	1000000	0	-	rad/s ²	С	Α	1668
	deceleration_limitquickstop	0x6510	25	no	f32	r/w	1000000	0	-	rad/s^2	С	Α	1670
	deceleration_limitfault	0x6510	26	no	f32	r/w	1000000	0	-	rad/s^2	С	Α	1671
	velocity_command_acceleration_limited	0x6510	13	yes	f32	r	-	-	-	incs/Tsamp	Ν	Α	1157
	velocity	0x6510	10	yes	f32	r	-	-	-	incs/Tsamp	Ν	Α	1151
_	velocity_filtered	0x6510	15	yes	f32	r	-	-	-	incs/Tsamp	Ν	Α	1165
V	ELOCITY LIMITING												
	velocity maximum	0x6510	28	no	f32	r/w	1000	0	20000	rad/s	С	Α	1800
	velocity_limit	0x6510	30	yes	f32	r/w	1000	0	20000	rad/s	Ν	Α	1802
V	ELOCITY LOOP FILTER												
	current_demand_velocity_comp_output	0x60F7	10	yes	f32	r	-	-	-	Amps.	Ν	Α	1120
	current_demand_vel_loop_filter_output	0x60F7	11	yes	f32	r	-	-	-	Amps	Ν	Α	1122
	velocity_loop_rate_divider	0x60F9	1	no	s16	r/w	4	1	10	none	С	Α	1136
	switching_frequency	0x60F7	1	no	u32	r	-	-	-	Hz	Ν	Α	1194
	velocity_loop_filter_coefficient_a1	0x25C1	1	no	f32	r/w	0	-	-	none	С	Α	1351
	velocity_loop_filter_coefficient_a2	0x25C1	2	no	f32	r/w	0	-	-	none	С	Α	1352
	velocity_loop_filter_coefficient_a3	0x25C1	3	no	f32	r/w	0	-	-	none	С	Α	1353
	velocity_loop_filter_coefficient_a4	0x25C1	4	no	f32	r/w	0	-	-	none	С	Α	1354
	velocity_loop_filter_coefficient_b0	0x25C1	5	no	f32	r/w	1	-	-	none	С	Α	1355
	velocity_loop_filter_coefficient_b1	0x25C1	6	no	f32	r/w	0	-	-	none	С	Α	1356
	velocity_loop_filter_coefficient_b2	0x25C1	7	no	f32	r/w	0	-	-	none	С	Α	1357
	velocity_loop_filter_coefficient_b3	0x25C1	8	no	f32	r/w	0	-	-	none	С	Α	1358
	velocity_loop_filter_coefficient_b4	0x25C1	9	no	f32	r/w	0	-	-	none	С	Α	1359
_	velocity_loop_filter_mode	0x25C1	10	no	u16	r/w	1	1	2	none	С	А	1360
I	ELOCITY FEEDBACK FILTER												
	velocity_filter_cutoff_factor	0x6510	14	no	f32	r/w	0.25	0	100	none	С	Α	1164
	velocity	0x6510	10	yes	f32	r	-	-	-	incs/Tsamp	Ν	Α	1151
	velocity_filtered	0x6510	15	yes	f32	r	-	-	-	incs/Tsamp	Ν	Α	1165
(CURRENT LOOP												
	current_loop_d-axis_i-gain	0x60F6	1	no	f32	r/w	6.35404981	0	-	V/A/Tsamp	С	Α	1272
	current loop d-axis p-gain	0x60F6	2	no	f32	r/w	32.02666839	0	-	V/A	С	A	1274
	current loop q-axis i-gain	0x60F6	3	no	f32	r/w	6.35404981	0	-	V/A/Tsamp	С	A	1277
	current loop q-axis p-gain	0x60F6	4	no	f32	r/w	32.02666839	0	-	V/A	С	Α	1279
	current loop alpha observer i-gain	0x60F6	9	no	f32	r/w	0.01394492	0	-	V/A/Tsamp	С	A	1288
	current loop alpha observer p-gain	0x60F6	10	no	f32	r/w	0.19933257	0	-	V/A	С	Α	1290

MOOG DS2100 User's Manual

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

current loop beta observer i-gain	0x60F6	11	no	f32	r/w	0.01394492	0	-	V/A/Tsamp	С	Α	1293
current_loop_beta_observer_p-gain	0x60F6	12	no	f32	r/w	0.19933257	0	-	V/A	С	Α	1295
current_loop_foldback_minimum	0x60F6	5	no	f32	r/w	0.4	0.1	1	None	С	Α	1284
current_loop_foldback_breakpoint	0x60F6	6	no	f32	r/w	140.0	0	-	А	С	Α	1285
current_d-axis_observer	0x60F7	4	yes	f32	r	-	-	-	Amps	Ν	Α	1096
current_q-axis_observer	0x60F7	5	yes	f32	r	-	-	-	Amps	Ν	А	1097
current_d-axis_demand	0x60F7	6	yes	f32	r	-	-	-	Amps	Ν	А	1098
current_q-axis_demand	0x60F7	7	yes	f32	r	-	-	-	Amps	Ν	А	1099
current_phase_A_demand	0x2410	13	yes	s16	r	-	-	-	Amps	Ν	А	1104
current_phase_B_demand	0x2410	14	yes	s16	r	-	-	-	Amps	Ν	А	1105
current_phase_A_feedback	0x2210	14	yes	s16	r	-	-	-	see note 1	Ν	Α	1069
current_phase_B_feedback	0x2210	15	yes	s16	r	-	-	-	see note 1	Ν	Α	1070
current_loop_q-axis_error	0x60F6	7	yes	f32	r	-	-	-	Amps	Ν	А	1287
current_loop_d-axis_error	0x60F6	8	yes	f32	r	-	-	-	Amps	Ν	А	1286
current_loop_alpha_observer_error	0x60F6	13	yes	f32	r	-	-	-	Amps	Ν	А	1298
current_loop_beta_observer_error	0x60F6	14	yes	f32	r	-	-	-	Amps	Ν	А	1299
current_actual	0x60F7	9	yes	f32	r	-	-	-	Amps	Ν	А	1119
motor_velocity_loop_rate_divider	0x60F6	15	no	s16	r/w	1	1	-	None	С	Α	1144
motor_velocity_actual	0x60F6	16	yes	f32	r	-	-	-	Incs/Tsamp	Ν	А	1152
motor_velocity_filtered	0x60F6	18	yes	f32	r	-	-	-	Incs/Tsamp	Ν	А	1163
motor_velocity_filter_cutoff_factor	0x60F6	17	no	f32	r/w	0.25	0	100	none	С	А	1162
motor_max_velocity	0x6410	8	no	f32	r/w	1000	0	20000	rad/s	С	А	1082
current_scaling_factor_field_weakening	0x2410	24	no	f32	r/w	1.0	0	1.0	none	С	А	1115
field_weakening_vmax_scaling_factor	0x2450	3	no	f32	r/w	0.85	0	1.0	none	С	А	1193
CONTROL LOOP CONFIGURATION												
control loop torque mode preset	0x2581	6	no	u32	r/w	0x8111	-	-	none	С	А	1334
control loop velocity mode preset	0x2581	5	no	u32	r/w	0x871A	-	-	none	С	А	1333
control loop position mode preset	0x2581	4	no	u32	r/w	0x87D8	-	-	none	С	Α	1332

Table 5.32 Control Loops Parameter Access Detail

Note 1: units for the *current_loop_phase_x_feedback* parameters are *nominal_sensed_current* / 2^{15} . e.g. the parameters have a physical range of \pm *nominal_sensed_current* represented as a signed 16-bit number.

5.12 Drive Monitoring & Fault Detection

5.12.1 Drive Monitoring

The DS2100 monitors a range on internal and external drive voltages, temperatures, times and powers to ensure that the drive is operating correctly. Depending on the state of these feedback signals, the drive will react appropriately to ensure safe and reliable operation of the drive. The parameters monitored are listed below.

Temperatures

Parameter Name	Index / Subindex	Description
bridge_temperature	0x2802 / 5	Power Amplifier Bridge Temperature
motor_temperature	0x2802 / 10	Motor Winding Temperature
ambient_temperature	0x2802 / 15	Control Electronics Ambient Temperature

Table 5.33 Monitored Temperatures

Voltages

Parameter Name	Index / Subindex	Description
supply +24V	0x2810 / 25	Internal 24V Logic Supply
supply +3V3	0x2810 / 5	3.3V Logic Supply
supply -15V	0x2810 / 10	-15V Logic Supply
supply +15V	0x2810 / 15	+15V Logic Supply
supply +2V ref.	0x2810 / 20	2V Reference Level
encoder supply	0x2810 / 30	Encoder Supply
bus voltage actual	0x60F7 / 18	DC Bus Voltage

Table 5.34 Monitored Voltages

Times (Elapsed time Indicator)

Parameter Name	Index / Subindex	Description
ETI_total_power_on_time	0x2A03 / 1	Total powered up time
ETI_power_on_time_since_power_on	0x2A03 / 2	Power up time since power up
ETI_number_of_power_downs	0x2A03 / 3	Number of power downs
ETI_enabled_time	0x2A03 / 4	Total enable time
ETI_enabled_time_since_power_on	0x2A03 / 5	Enabled time since power up
ETI_enabled_time_since_enable	0x2A03 / 6	Current enabled time

Table 5.35 Monitored Times

Power

Parameter Name	Index / Subindex	Description
regen_power_filtered	0x24A4 / 5	Average Regeneration Power (Measured)

Table 5.36 Monitored Powers

5.12.2 Faults and User Indication in the DS2100

This section outlines the user indication that is present on the DS2100. The drive will, depending on its state, indicate via the 7-segment display, various messages to the user. These messages generally reflect the state of operation of the drive and any faults that may be present.

The DS2100 distinguishes between faults and warnings. Faults are those abnormal conditions that are of a serious enough consequence to cause the DS2100 to halt operation. This will always result in removal of power from the DS2100 high power amplifier, and will usually result in application of a motor brake, if present,

Warnings are those abnormal conditions that do not in themselves yet constitute a peril to the equipment or to personnel.

Display Status	Description
0	Logic voltage applied, High voltage
	applied. No faults present. Drive
	ready to be enabled
Ι	Drive Enabled
U* (Table 5.38)	U* Warning state & No faults
	present
F* (Table 5.39)	Fault on drive

Table 5.37 7-Segment Display Indication

Display	Warning Description	Drive Reaction
	Current limiting Active : due to	Current limited
•	Thermal Foldback	
	Manual Mode	
	I ² t limiting	
U1	High Power Not Ready – softstart mode	Drive will not enable
U2	Motor Thermal Warning :	Current limited
	This warning indicates that the motor winding	
	temperature is within 10% of the motor max	
	temperature.	
U3	Power Amplifier Thermal Warning:	Current limited
	This warning indicates that the power transistor heatsink	
	temperature is within 10% of the bridge maximum	
	temperature.	
U4	Regeneration Power Warning :	None
	This warning indicates that the power dissipated in the	
	regen resistor(s) is within 10% of the continuous	
	capability of the resistor(s).	
U5	Position Tracking Warning :	None
	This warning indicates that the position error has	
	exceeded a pre-set threshold. This error will only be	
	present when the drive is in position mode.	
U6	Limit Switch Warning :	Cannot move in
	This warning indicates that either clockwise or counter	particular direction.
	clockwise limit switch has become active.	
U7	24V Backup Supply Warning :	None
	This warning indicates that Logic supply is below 18	
	Volts, or greater than 32 Volts.	
U8	Manual Mode:	Current and velocity
	This warning indicates that user has switch the drive	limited to limman % of
	into manual mode.	normal limits.
09	Enable Attempted Warning:	Drive will not enable.
	This warning indicates that the user has attempted to	Note that this warning
	enable the drive from a no fault state, but with at least	will remain present once
	one of the conditions for enable false (e.g. H/w enable	set until the drive is truly
110	false, Bus voltage not present)	enabled
010	Power Amplifier Thermal Limit Warning:	Current limited
	This warning indicates that the power transistor heatsink	
TT11	temperature is causing the current to be limited	C manual l'activat
UII	Motor Thermal Limit Warning:	Current limited
	I his warning indicates that the motor winding	
1112	Ambient Thermel Limit Werning:	Current limited
012	Amount I nermai Limit warning:	Current nimited
	r ms warning mulcales that the ambient (control card	
1112	Ambient Thermal Woming (Cumont limite 1
015	Amount I nermal warming : This warming indicates that the ambient (control and	Current nimited
	sonsor) tomporature is within 100% of the embient may	
	temperature is within 10% of the ambient max	
1	temperature.	1

A list of warnings and faults that should be indicated are detailed in Table 5.38 and Table 5.39.

Table 5.38 7-Segment Warning Idication

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

DS2100 User's Manual

F #	Description	F #	Description
1	Power Stage Short Circuit Fault	2	DC Bus Over Voltage Fault
3	Regen. Fault	4	Ambient Over temperature Fault
5	Bridge Over temperature Fault	6	Motor Over temperature Fault
7	Encoder Fault	8	Resolver Fault
9	Logic/Analog Supply Fault	10	Database / NVM Fault
11	CAN Fault	12	DC Bus Fault
13	Program Fault	14	Current Loop Fault
15	Board Fault		Undetermined Fault – (should never occur)

Table 5.39 7-Segment Display Fault Indication

5.12.3 Drive Fault Reaction

The DS2100 distinguishes between two types of faults:-

- Fatal Faults are those faults with which the DS2100 cannot continue to control the motor. The DS2100's reaction to a fatal fault is to immediately disable the switching of the power amplifier. For example, if resolver position sensing is lost, the motor cannot be commutated. The ability to control the motor output torque is therefore lost and the DS2100 immediately disables high power from the motor.
- Non-Fatal Faults are those faults which will likely lead to equipment failure or hazards to personnel, but the DS2100 is still capable of controlling the motor output torque. For example, motor over-temperature is treated as a non-fatal fault, because the DS2100 can perform a controlled deceleration of the motor. Once the motor stops rotating, the drive can apply the brake and disable the drive.

5.12.3.1 Fatal Fault

If the drive detects a fatal fault, it immediately disables the power stage of the drive. If the drive is set to internal brake control, *brake_control_fault (index* 0x6510, *subindex* 19) = 1 (default setting), the drive will also apply the brake immediately. If it is set to 0, then the drive will disable the power stage but application of the brake is left to the user. Typically, the user would in this case, control the brake with a digital input.

Fault Type	Drive Reaction	External Brake control	Internal Brake control
Fatal	Immediate Disable	Brake not applied	Brake Applied

5.12.3.2 Non-Fatal Fault

If the drive detects a non-fatal fault, its reaction depends on a number of parameters. The action of the drive is detailed below. On detection of a non-fatal fault, the drive immediately decelerates the drive to zero speed at the drive deceleration limit, <u>deceleration_limit_-_fault</u> (index 0x6510 subindex 26). Once the velocity falls below the level set in parameter *fault_reaction_velocity* (index 0x2420 subindex 6), the brake is applied. The drive then disables the power stage after the time set in parameter *brake_bridge_timeout* (index 0x6510 subindex 1) has elapsed. If the drive does not decelerate to a speed below *fault_reaction_velocity* within the time set by parameter *ramp_down_timeout* (index 0x6510, subindex 9), the drive will disable anyway and apply the brake .

In each of the cases outlined above, the brake will only be applied if it is under internal control, brake_fault_control set to 1. As with the fatal fault detailed above, if this parameter is set to 0, then it is up to the user to manage the application and removal of the brake in fault conditions.

Fault Type	Drive Reaction	External Brake control	Internal Brake control
Non-Fatal	Controlled motor	Brake not applied	Brake Applied
	deceleration & disable		

DS2100 User's Manual

5.12.3.3 Fault Group Descriptions

The following table lists the errors, and the groups to which they will belong. It also lists the faults as either being fatal or non-fatal and the status code for the fault in the error log.

Fault Name	Severity	Status code
Group 01: Power Stage Short Circuit Fault		
Regeneration short circuit fault	FATAL	61
short circuit top fault	FATAL	73
short circuit bottom fault	FATAL	77
Group 02: DC Bus Over-Voltage Fault		
Bus over-voltage fault	FATAL	58
Group 03: Regeneration Fault		
Regeneration initialisation fault	FATAL	60
Group 04: Ambient Over temperature Fault		
Ambient over temperature fault	NON FATAL	26
Group 05: Bridge Over temperature Fault		20
power stage over temperature fault	NON FATAL	75
Group 06: Motor Over temperature Fault		15
motor over temperature fault	NON FATAL	76
Group 07: Encoder Fault	NON_PATAL	70
loss of encoder fault	<u>ም</u> ለጥለፒ.	72
encoder security loop fault	NON FATAL	81
encoder parity/gray code fault	NON_FATAL	82
encoder supply fault	FATAL	84
DSP ADC2 input out-of-range	FATAL	106
DSP ADC6 input out-of-range	FATAL	110
Group 08: Resolver Fault		
loss of resolver fault	FATAL	74
DSP ADC0 input out-of-range	FATAL	104
DSP ADC3 input out-of-range	FATAL	107
DSP ADC4 input out-of-range	FATAL	108
DSP ADC7 input out-of-range	FATAL	111
Group 09: Logic/Analogue Supply Fault		
3.3V supply fault	FATAL	64
+15V supply fault	FATAL	66
-15V supply fault	FATAL	67
power down detected (low vdc)	FATAL	68
2V reference fault	FATAL	71
Group 10: Database/NVM Fault		
parameter database NVM initialisation error	FATAL	168
NVM write fault	NON_FATAL	12
Parameter NVM checksum fault	FATAL	13
NVM address out of range	FATAL	123
Group 11: CAN Fault		
SYNC timeout fault	NON_FATAL	6
CAN gone bus off	NON_FATAL	176
Group 12: DC Bus Fault		
bus voltage unstable	NON_FATAL	69
Bus under-voltage fault	NON_FATAL	59
Group 13: Program Fault		
internal programming fault	FATAL	120

	rate task initialisation error	FATAL	122
	Error handler fault	FATAL	127
	rate task 1 time overrun	FATAL	128
	rate task 2 time overrun	FATAL	129
	rate task 3 time overrun	FATAL	130
	rate task 4 time overrun	FATAL	131
	any reserved exception	FATAL	144
i	machine check exception	FATAL	145
	data access exception	FATAL	146
	instruction access exception	FATAL	147
	alignment exception	FATAL	148
	program exception	FATAL	149
	floating point unavailable exception	FATAL	150
	system call exception	FATAL	151
	trace exception	FATAL	152
	floating point assist exception	FATAL	153
	software emulation exception	FATAL	154
	instruction protection exception	FATAL	155
	data protection exception	FATAL	156
	data breakpoint exception	FATAL	157
	instruction breakpoint exception	FATAL	158
i	maskable external breakpoint exception	FATAL	159
	non-maskable external breakpoint exception	FATAL	160
	returned to exception handler from interrupt	FATAL	161
	failed to rfi for decrementer exception	FATAL	162
	exception handler fault	FATAL.	163
		T 11T11T	105
Gı	roup 14: Current Loop Fault	111111	105
Gı	coup 14: Current Loop Fault dead-time generation fault	FATAL	86
Gı	coup 14: Current Loop Fault dead-time generation fault phase A current offset fault	FATAL NON-FATAL	86 96
G	coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault	FATAL NON-FATAL NON-FATAL	86 96 97
G	roup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range	FATAL NON-FATAL NON-FATAL FATAL	86 96 97 105
Gı	dead-time generation faultphase A current offset faultphase B current offset faultDSP ADC1 input out-of-rangeDSP ADC5 input out-of-range	FATAL NON-FATAL NON-FATAL FATAL FATAL	86 96 97 105 109
Gr	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range coup 15: Board Fault</pre>	FATAL NON-FATAL FATAL FATAL	86 96 97 105 109
Gı	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault</pre>	FATAL NON-FATAL FATAL FATAL FATAL	86 96 97 105 109 24
Gı	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range coup 15: Board Fault FPGA configuration transmission fault DSP programming fault</pre>	FATAL NON-FATAL FATAL FATAL FATAL FATAL FATAL	86 96 97 105 109 24 25
G	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range coup 15: Board Fault FPGA configuration transmission fault DSP programming fault OSPI loopback fault</pre>	FATAL NON-FATAL NON-FATAL FATAL FATAL FATAL FATAL FATAL FATAL	86 96 97 105 109 24 25 29
G	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range coup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault</pre>	FATAL NON-FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL	86 96 97 105 109 24 25 29 32
G	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range coup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 initialisation parameters fault</pre>	FATAL NON-FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL	86 96 97 105 109 24 25 29 32 38
GI	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 initialisation parameters fault COM2 loop back fault</pre>	FATAL NON-FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL	86 96 97 105 109 24 25 29 32 38 40
G	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 initialisation parameters fault COM2 loop back fault COM2 initialisation parameters fault</pre>	FATAL NON-FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL	86 96 97 105 109 24 25 29 32 38 40 45
Gı	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range coup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM2 loop back fault QSPI initialisation parameters fault QSPI initialisation fault</pre>	FATAL NON-FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL	86 96 97 105 109 24 25 29 32 38 40 45 46
G	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range coup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 initialisation parameters fault COM2 loop back fault COM2 initialisation parameters fault QSPI initialisation fault FPGA test RAM fault</pre>	FATAL NON-FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL	86 96 97 105 109 24 25 29 32 38 40 45 46 15
Gn	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 initialisation parameters fault COM2 initialisation parameters fault QSPI initialisation fault FPGA test RAM fault arnings logged to error log</pre>	FATAL FATAL	86 96 97 105 109 24 25 29 32 38 40 45 46 15
Gu	<pre>roup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 initialisation parameters fault COM2 initialisation parameters fault QSPI initialisation fault FPGA test RAM fault armings logged to error log +24V supply under-voltage</pre>	FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL	86 96 97 105 109 24 25 29 32 38 40 45 46 15 65
Gri	<pre>coup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 initialisation parameters fault COM2 loop back fault COM2 initialisation parameters fault QSPI initialisation fault FPGA test RAM fault arnings logged to error log +24V supply under-voltage thermal limit active</pre>	FATAL FATAL NON-FATAL - -	86 96 97 105 109 24 25 29 32 38 40 45 46 15 65 95
Gri	<pre>roup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 loop back fault COM2 loop back fault COM2 initialisation parameters fault QSPI initialisation fault FPGA test RAM fault amings logged to error log +24V supply under-voltage thermal limit active atus logged but not displayed</pre>	FATAL NON-FATAL FATAL	86 96 97 105 109 24 25 29 32 38 40 45 46 15 65 95
	<pre>roup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 loop back fault COM2 loop back fault COM2 initialisation parameters fault QSPI initialisation fault FPGA test RAM fault FPGA test RAM fault amings logged to error log +24V supply under-voltage thermal limit active atus logged but not displayed ETI NVM checksum fault</pre>	FATAL NON-FATAL FATAL	86 96 97 105 109 24 25 29 32 38 40 45 46 15 65 95 16
	<pre>roup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 loop back fault COM2 loop back fault COM2 initialisation parameters fault QSPI initialisation fault FPGA test RAM fault armings logged to error log +24V supply under-voltage thermal limit active atus logged but not displayed ETI NVM checksum fault Error Log NVM checksum fault</pre>	FATAL NON-FATAL NON-FATAL FATAL	103 86 96 97 105 109 24 25 29 32 38 40 45 46 15 65 95 16 17
	<pre>roup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 initialisation parameters fault COM2 loop back fault COM2 initialisation parameters fault QSPI initialisation fault FPGA test RAM fault armings logged to error log +24V supply under-voltage thermal limit active atus logged but not displayed ETI NVM checksum fault LED display initialisation fault LED display initialisation fault</pre>	FATAL FATAL NON-FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL FATAL C C C C C C C C C C C C C	103 86 96 97 105 109 24 25 29 32 38 40 45 46 15 65 95 16 17 55
	<pre>choop of the handle of the fault or oup 14: Current Loop Fault dead-time generation fault phase A current offset fault phase B current offset fault DSP ADC1 input out-of-range DSP ADC5 input out-of-range roup 15: Board Fault FPGA configuration transmission fault DSP programming fault QSPI loopback fault COM1 loop back fault COM1 initialisation parameters fault COM2 loop back fault COM2 initialisation parameters fault QSPI initialisation fault FPGA test RAM fault armings logged to error log +24V supply under-voltage thermal limit active atus logged but not displayed ETI NVM checksum fault LED display initialisation fault velocity ramp down fault</pre>	FATAL	103 86 96 97 105 109 24 25 29 32 38 40 45 46 15 65 95 16 17 55 78

Undetermined Fault

If the drive is faulty, but the fault group cannot be determined, F is also displayed.

DS2100 User's Manual

5.12.4 Fault Messages - CAN

These faults are also used to group faults that are sent out as emergency messages over CAN.

F #	Description	Emer.	Meaning
	-	Msg	
1	Power Stage Short Circuit Fault	0x2340	Current on output side: Short Circuit
2	DC Bus Over Voltage Fault	0x3210	Voltage: DC Link Over-voltage
3	Regen. Fault	0x2310	Device Hardware: Power Section
4	Ambient Over temperature Fault	0x4110	Temperature: Excess Ambient Temp.
5	Bridge Over temperature Fault	0x4210	Temperature: Excess Temp. Device
6	Motor Over temperature Fault	0x4310	Temperature: Excess Temp. Drive
7	Encoder Fault	0x7305	Add Modules: Sensor: Incremental sensor 1 fault.
8	Resolver Fault	0x7303	Add Modules: Sensor: Resolver 1 Fault
9	Logic/Analog Supply Fault	0x5100	Device Hardware: Supply
10	Database / NVM Fault	0x5530	Device Hardware: Non-volatile data memory
11	CAN Fault	0x8100	Monitoring : Communication
12	DC Bus Fault	0x3200	Voltage: DC link voltage
13	Program Fault	0x6100	Device Software: internal software
14	Current Loop Fault	0x2300	Current on device output side
15	Board Fault	0x5200	Device Hardware: Control

Table 5.40 CAN Fault Error Codes

5.12.5 Fault Clearing

It is possible to clear all faults except for those faults that occur during the initialisation process and faults due to microprocessor exceptions. It is possible to determine whether one of these non-clearable faults has occurred by reading the <u>status_controller</u> parameter (0x2B10/15). If bit 6 of this parameter is 1 then a non-clearable fault has occurred. (where bit 0 is LSB).

To clear faults, the parameter errors_clear (0x2B00 /1) must be written with a value of 1.

The actions performed when clearing errors are as follows:

- 1. real-time fault monitoring is disabled
- 2. fault flags, latched faults and fault counters cleared
- 3. non-fault state requested in drive state machine
- 4. when non-fault state achieved then errors_clear is reset to 0
- 5. real-time fault monitoring re-enabled

The completion of the fault clearing process can be verified by reading errors_clear. Once the process has completed the fault monitoring operates normally and so if a fault is still present it will be detected again.

WARNING:- DELAY IN RE-DETECTING FAULTS

After the DS2100 has cleared faults the time taken to redetect a particular fault depends upon the rate at which it is monitored. Typically, parameters that only change slowly under normal circumstances (such as temperatures) may only be monitored every 100ms. Therefore, a delay of 0.5s should normally be allowed after clearing faults before re-enabling the drive

5.12.6 Event Log

The DS2100 maintains a non-volatile log of faults and status to aid fault diagnosis. The event log contains the last 850 (approx.) faults that occurred on the drive and is a circular buffer. The data recorded for each fault entry in the event log is as follows:

Index	Туре	Name	Description
0x2B00 /9	U32	event log timestamp	total power on time in seconds as a 32-bit unsigned integer
0x2B00 /10	U32	event_log_data1	top 16 bits: status code defining event logged next 8 bits: 1=status set, 2=status cleared low 8 bits: ambient temperature as 8-bit signed integer
0x2B00 /11	U32	event_log_data2	additional event information

Table 5.41 Event log data parameters

When retrieving event log information, there are some additional parameters that give information on how many events have been logged and to allow the user to retrieve the required part of the event log. These parameters are described in the table below:

Index	Туре	Name	Description
	* *		

DS2100 User's Manual

0x2B00 /4	U32	event_log_size	number of bytes used in event log since last power on
0x2B00/16	U32	event log increment	number of bytes used per entry in event log (currently 12)
0x2B00 /5	U16	event log current position	byte pointer to current position in event log
0x2B00 /8	U16	event_log_read_pointer	byte pointer to position to read from in event log

Table 5.42 Error log access parameters

In order to read the data from the event log it is first necessary to find out the current position in the event log by reading event_log_current_position. This indicates the address at which the next event log entry will be written. The read pointer must then be set to a multiple of the event log increment less than the current position. Then the event log data may be read. The time stamp must always be read before reading the data1 and data2 values since the timestamp read is used to set up the data values to be read.

Successive entries may be read from the event log without setting the read pointer each time.

For example, to read the event log entries since the last power on:

- 1. read event_log_size
- 2. read event_log_increment
- 3. read event_log_position
- 4. set event_log_read_pointer to be (position size)
- 5. read event_log_timestamp
- 6. read event_log_data1
- 7. read event_log_data2
- 8. repeat steps 5,6,7 (size / increment) times

To read the last 10 event log entries:

- 1. read event_log_increment
- 2. read event_log_position
- 3. set event_log_read_pointer to be (position (10 * increment))
- 4. read event_log_timestamp
- 5. read event_log_data1
- 6. read event_log_data2
- 7. repeat steps 10 times

5.12.7 Drive Monitoring & Fault Detection Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
Ľ	DRIVE MONITORING												
	bridge temperature	0x2802	5	yes	f32	r	-	-	-	°C	Ν	Α	1368
Ĩ	motor_temperature	0x2802	10	yes	f32	r	-	-	-	°C	Ν	А	1373
I	ambient_temperature	0x2802	15	yes	f32	r	-	-		°C	Ν	А	1378
	supply_+24V	0x2810	25	yes	f32	r	-	-	-	V	Ν	А	1441
	supply_+3V3	0x2810	5	yes	f32	r	-	-	-	V	Ν	А	1421
	supply15V	0x2810	10	yes	f32	r	-	-	-	V	Ν	А	1426
	supply_+15V	0x2810	15	yes	f32	r	-	-	-	V	Ν	А	1431
	supply_+2V_ref.	0x2810	20	yes	f32	r	-	-	-	V	Ν	A	1436
	encoder_supply	0x2810	30	yes	f32	r	-	-	-	V	Ν	А	1446
	bus_voltage_actual	0x60F7	18	yes	f32	r	-	-	-	V	Ν	А	1232
	ETI_total_power_on_time	0x2A03	1	yes	u32	r	-	-	-	S	Ν	А	1482
	ETI_power_on_time_since_power_on	0x2A03	2	yes	u32	r	-	-	-	S	Ν	А	1483
	ETI_number_of_power_downs	0x2A03	3	yes	u16	r	-	-	-	none	Ν	А	1484
	ETI_enabled_time	0x2A03	4	yes	u32	r	-	-	-	S	Ν	А	1485
	ETI_enabled_time_since_power_on	0x2A03	5	yes	u32	r	-	-	-	S	Ν	А	1486
	ETI_enabled_time_since_enable	0x2A03	6	yes	u32	r	-	-	-	S	Ν	А	1487
	regen_power_filtered	0x24A4	5	yes	f32	r	-	-	-	W	Ν	А	1252
F	AULT REACTION												
Τ	brake_fault_control	0x6510	18	no	u16	r/w	1	-	-	none	С	Α	1505
I													
I	acceleration limit	0x6510	18	no	f32	r/w	1000	0	-	rad/s ²	С	A	1335
	fault_reaction_velocity	0x2420	6	no	f32	r/w	0.5	0.05	1000	rad/s	C	A	1141
I	brake_lock_to_disable_timeout	0x6510	1	no	f32	r/w	0.1	0	5	8	C	Α	1004

SECTION 5: DS2100 FUNCTIONAL OVERVIEW

	velocity_rampdown_time_limit	0x6510	9	no	f32	r/w	1	0	1000	S	С	А	1143
ł	FAULT CLEARING												
	status controller	0x2B10	15	yes	u08	r	-	-	-	none	Ν	А	1522
	errors clear	0x2B00	1	yes	u16	r/w	0	-	-	none	Ν	А	1491
ł	EVENT LOG												
	event_log_timestamp	0x2B00	9	no	u32	r	-	-	-	S	Ν	А	1499
	event_log_data1	0x2B00	10	no	u32	r	-	-	-	none	Ν	Α	1500
	event_log_data2	0x2B00	11	no	u32	r	-	-	-	none	Ν	Α	1501
	event_log_size	0x2B00	4	no	u32	r	-	-	-	none	Ν	А	1494
	event_log_increment	0x2B00	16	no	u32	r	-	-	-	none	Ν	А	1640
	event_log_current_position	0x2B00	5	no	u16	r	-	-	-	none	Ν	А	1495
	event_log_read_pointer	0x2B00	8	no	u16	r/w	-	-	-	none	Ν	А	1498

Table 5.43 Drive Monitoring and Fault Detection Parameter Access Detail

5.13 Self Protection

5.13.1 Power Amplifier Thermal Protection Mechanism

The power amplifier is protected by using a scheme called Thermal-Foldback. The DS2100 is rated to operate at an ambient temperature of up to 40°C.

- The Foldback scheme is designed to ensure a very conservative temperature margin is maintained between power device manufacturer's rated maximum temperatures (semiconductor junction temperature) and the actual semiconductor junction temperature.
- The Running Thermal Limit applies when the speed of the motor is greater than approximately 50RPM. The Stall Thermal Limit applies for motor shaft speeds of less than approximately 50RPM. The Stall Limit will become less than the peak current capability of the amplifier only at elevated ambient temperatures and high continuous operating loads.

5.13.2 Motor Thermal Protection Mechanism

The DS2100 can measure the temperature of the motor by means of a Negative Temperature Coefficient thermistor (NTC) or a Positive Temperature Coefficient thermistor (PTC) buried within the motor windings. With the motor NTC, temperature is measurable between approximately 25°C and 175°C.

The PTC acts as a thermal switch so linear temperature measurement of the motor is not possible. When this device changes from a low impedance state to a high impedance state, the software will detect and report a fault.

• Software calculates the motor thermal limit based upon the motor windings temperature. The motor protection scheme is intended to ensure that the temperature of the motor core will not exceed 155°C.

5.13.3 Cabling and Interconnect Protection Scheme

Each DS2100 model has a continuous current rating. The DS2100 operates an algorithm that limits the overall RMS level of motor phase current appropriately, over a time window. This is intended to protect the connectors and internal circuitry, which would otherwise be thermally over-stressed.

The DS2100 measures the motor phase currents at a high frequency. It calculates the remaining amount of current for the next period to ensure that the overall RMS current rating of the drive is not exceeded.

5.13.4 Regeneration Resistor Protection Scheme

The DS2100 can be equipped, depending on the model size, with an internal or external regeneration resistor. The algorithm controlling the duty cycle of the resistor ensures that the power dissipated by the resistor is maintained at the resistor rating provided by the user.

5.14 Parameter Storage

5.14.1 Command Parameters

The saving and loading of parameters to the Non-Volatile Memory (NVM) of the drive is implemented using three parameters, and a number of bit fields. The three relevant parameters are listed below: -

Index	Туре	Name
0x2141/0	U08	nvm load parameters
0x2142/0	U08	nvm_save_parameters
0x2143/0	U08	load default parameters

Table 5.44 List of NVM related parameters

5.14.2 Storage Types

Each parameter is assigned a storage type that defines the area of NVM to which it is stored. The storage types are:

- None: parameter is not saved to NVM
- Fac: Factory types are used to hold parameters which are set during drive manufacture, not for general user.
- Ext:- Extended types are used to hold baud rates, parity etc
- Cus: General / Customer types are placed in a general area used to hold parameters set by the user.
- Enc: Encoder types are stored in the encoder EEPROM and also in the 'Cus' storage area

When a load or save is performed, the user defines the storage type of the parameters to be saved or loaded, by setting the appropriate bit(s) in the parameter.

5.14.3 Data Group

Each parameter is assigned to a particular data group. The two groups are: -

- App : Application profile parameters
- Com :- Communication parameters

When a load or save is performed, the user defines the data group of the parameters to be saved or loaded, by setting the appropriate bit(s) in the parameter. The bit mask for selecting the appropriate storage type, and data group is shown below :-

Figure 5.12 : Bit Masks for Storage type and data group

- If the user wishes to save all parameters, (i.e. of all type and all groups) to NVM, set *nvm_save_parameters* to 0xFF
- If the user wishes to load the saved value of all customer parameters, set *nvm_load_parameters* to 0x17
- If the user wishes to load the default ROM values, for all communication parameters, set load_default_parameters to 0x71
- If the user wishes to save only application parameters, set <u>nvm_save_parameters</u> to 0x72
- If the user wishes to load all factory settings, set <u>nvm load parameters</u> to 0x47

The parameters and bit-masks are required to load and save parameters using CAN. The GUI has parameters load/save panels, in the utilities sub-folder, for saving different groups of parameters, so the user does not need to know the bitmasks, and parameters required.

Note: The NVM save operation will only be performed if the drive is disabled. If a save is commanded while the drive is enabled, the save will not be performed, but there will be no error message to indicate that this is the case.

5.14.4 Parameter Storage Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
F	PARAMETER STORAGE												
	<u>nvm load parameters</u>	0x2141	0	no	u08	r/w	0	-	-	none	Ν	А	10000
	nvm save parameters	0x2142	0	no	u08	r/w	0	-	-	none	Ν	А	10001
	load default parameters	0x2143	0	no	u08	r/w	0	-	-	none	Ν	Α	10002

Table 5.45 Parameter Storage Parameter Access Data

Page Intentionally Blank

SECTION 6: DS2100 CANOPEN INTERFACE

TABLE OF CONTENTS

SECTION 6	5: DS2100 CANOPEN INTERFACE	
6.1 IN	TRODUCTION	
6.2 Re	FERENCE DOCUMENTATION	
CAN CAB	BLE WIRING	
6.3 CA	AN NODE IDENTIFIER	
6.4 CA	AN CONTROLLER CONFIGURATION	
6.4.1	CAN Enable	
6.4.2	CAN bus bitrate	
6.4.3	CAN Controller Parameters	
6.5 DA	ата Types	
6.6 NE	ETWORK INITIALISATION AND SYSTEM BOOTUP	
6.6.1	CAN state	
6.6.2	Network Initialisation and System Bootup Parameters	
6.7 SE	RVICE DATA OBJECTS (SDO)	
6.7.1	SDO communication object identifier	
6.7.2	SDO timeout	
6.7.3	SDO abort codes	
6.7.4	SDO Parameters	
6.8 PR	OCESS DATA OBJECTS (PDO)	
6.8.1	Communication Object Identifier	
6.8.2	Transmission Type	
6.8.3	PDO Inhibit Time	
6.8.4	PDO Event Time	
0.8.5	PDO mapping	
0.8.0	PDO Parameters	
6.9 SY	NCHRONISATION	
0.9.1	Synchronisation Parameters	
6.10 CC	DMMUNICATION PROFILE OBJECTS	
0.10.1	Error reporting	
0.10.2 6 10 2	Rearing and negtoning Dangenstons	
0.10.5 6.10.4	Duive Identification	
6 10 5	Univertuentification	
6.10.5	Communication Profile Parameters	
6 11 CA	AN INDICATORS	6-22
6111	Run Indicator	6-22
6 11 2	Fror Indicator	6-23
6.12 DA	ATA TYPE PARAMETERS	6-24
6 12 1	Data Type Parameters	6-24
6 13 Ar	DITIONAL FUNCTIONALITY CONFIGURATION	6-25
6.13.1	CAN Configuration Parameter	
6.13.2	Boot-Up Complete	
6.13.3	SYNC Transmit	
6.13.4	Auto-Start	
6.13.5	Calculate SYNC Period	
6.13.6	Check for PDO Data Changed	
6.13.7	Recovery From Bus-Off	
6.13.8	Additional Functionality Configuration Parameters	

6.1 Introduction

This section describes the CANopen Interface of the DS2100. It details the DS2100 implementation of the CAN in Automation CANopen Draft Standard 301, the CANopen Objects supported and the Moog specific additions to that.

CAN is an abbreviation for the Controller Area Network. This is a high speed serial interface which was designed for use in Automotive and Industrial applications.

Users are directed to read Section 2, Safety Instructions of the DS2100 User's Manual, before proceeding with installation.

The DS2100 provides two hexadecimal switches to set the CAN node ID of the drive. Two LEDs (RUN & ERROR) are provided to indicate the status of operation of the CAN network

6.2 Reference Documentation

For further information please refer to the following specifications from CAN in Automation:

- CiA Draft Standard 301: Application Layer and Communication Profile (referred to in this documentation as 'DS 301')
- CiA Draft Recommendation 303-3: Indicator Specification (referred to in this documentation as 'DS 303')

The CAN standards refer to parameters as 'objects'. Because of all parameters not only being available via CAN but also via the Man Machine Interface (MMI) they are referred to as 'parameters' in this documentation.

CAN Cable Wiring

The CAN-In and CAN-Out ports at J3A and J3B of the DS2100 provide the means to daisy-chain the CAN cabling between DS2100 units and system conroller. The CAN interface is equipped with driver and receiver for 24 V systems. These are optically isolated from the internal drive electronics for noise immunity. Internal supply of the isolated side of the CAN is provided. No user supplied voltage is required. Two daisy chained 9-way D-Sub connectors, one male, one female are also provided for ease of wiring.

Please refer to CAN Draft Standard 303, 'Cabling and Connector Pin Assignment' for further details of the CAN cabling requirements.

Figure 6.1 CAN Connector Location

Pos (x=A,B)	Signal	Description					
J3x.1	-	not connected					
J3x.2	CAN_L	CAN_L bus line (dominant low)					
J3x.3	CAN_GND	CAN Ground					
J3x.4	-	not connected					
J3x.5	CAN_SHLD	Chassis Ground					
J3x.6	CAN_GND	CAN Ground					
J3x.7	CAN_H	CAN_H bus line (dominant high)					
J3x.8	-	not connected					
J3x.9 -		Optional CAN external positive supply, not connected.					

Table 6.1 CAN Connector Pin Description

Note:-

- CAN lines must be terminated in a 1200hm resistance, between the positive and negative terminals (CAN-High and CAN-Low) at both ends of the CAN network for correct operation.
- All pins of J3A and J3B are wired straight through the connectors of the DS2100.

SECTION 6: CANOPEN INTERFACE

Figure 6.2 DS2100 CAN Wiring and Termination

FIND NO.	MOOG PART NO.	DESCRIPTION	QUANTITY
1	MAKE ITEM	CONNECTOR 9 WAY D TYPE MALE	USER SPLY
2	MAKE ITEM	CONNECTOR 9 WAY D TYPE FEMALE	USER SPLY
3	MAKE ITEM	CABLE BELDEN 9842	USER SPLY

Figure 6.3 CAN_L/CAN_H Connector (J3A and J3B) Wiring

6.3 CAN node identifier

The node identifier (node-id) within a CANopen network is set with the two hex switches at the front panel. Each node within the network (drives, peripherals ...) needs its own unique number. The switches have to be set to the node-id in hexadecimal. Valid node-ids are 0x01 to 0x7f(1 - 127 decimal). Any other setting will be treated as invalid node-id. This is indicated through both the run and error LED flickering.

Please note that once the drive has recognised an invalid node-id, a power cycle or 'Reset Communication' is required after setting the hex switches to a valid node-id. Refer to 'Network Initialisation and System Bootup' for further information.

6.4 CAN Controller Configuration

6.4.1 CAN Enable

The CAN bus can be enabled /disabled by using the parameter <u>can_enable</u> (index 0x3000, sub-index 1). When this parameter is set to 0 the CAN bus is disabled. When this parameter is non-zero the CAN bus is enabled. The default value for this parameter is 1.

6.4.2 CAN bus bitrate

The bit rate for the CAN bus can be set using the parameter <u>can_bus_bitrate</u> (index 0x200b, subindex 0). When changing the bit rate, the new value has to saved to EEPROM and then a reset communication (or power cycle) is required to enable the new bit rate. The following bit rates are supported:

- 10000 bits per second
- 20000 bits per second
- 50000 bits per second
- 125000 bits per second
- 250000 bits per second
- 500000 bits per second
- 800000 bits per second
- 1000000 bits per second

6.4.3 CAN Controller Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
C	CAN Enable												
	<u>can_enable</u>	0x3000	1	No	U8	rw	1	-	-	-	F	С	12000
F	BIT RATE												
	can bus bitrate	0x200B	0	no	U32	rw	1000000	-	-	-	С	С	12007

Table 6.2 CAN Controller Parameter Access Detail

6.5 Data Types

The following simple CANopen data types are supported:

- unsigned 8-bit integer
- signed 8-bit integer
- unsigned 16-bit integer
- signed 16-bit integer
- unsigned 24-bit integer
- signed 24-bit integer
- unsigned 32-bit integer
- signed 32-bit integer
- visible string
- 32-bit single precision floating point
- 64-bit double precision floating point

The following complex CANopen data types are supported:

- pdo communication parameter
- pdo mapping
- sdo parameter
- identity object

6.6 Network Initialisation and System Bootup

CAN draft standard 301 defines the various CAN node states and the state transitions.

Figure 6.4 CANopen node states

After power up the drive checks for a valid node identifier (node-id). Note that changing the hex switches once the drive has reached the LSS Init state has no effect any more. Changes of the node-id setting will only be recognised after a new power cycle.

All internal variables are initialised then and the drive automatically enters the Pre-Operational state after sending a bootup complete message. In the Pre-Operational state the drive can be configured using Service Data Objects (SDO). After configuring the drive it can be set into the Operational state using Network Management services (NMT). Please refer to DS 301 for further information.

6.6.1 CAN state

The current CAN state is available through the parameter $\underline{can \ state}$ (index 0x2009, subindex 0). It contains the following values depending on the CAN state:

0x01	-	Power on state
0x02	-	LSS Init state
0x04	-	Reset Application state
0x08	-	Reset Communication state
0x10	-	Initialisation state
0x20	-	Pre_Operational state
0x40	-	Stopped state
0x80	-	Operational state

The CAN state is also indicated through the RUN LED at the front panel. See 'CAN Indicators' or DS 303 for further information.

6.6.2 <u>Network Initialisation and System Bootup Parameters</u>

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
(CAN STATE												
	can_state	0x2009	0	no	U8	rw	1000000	-	-	-	Ν	С	12115

Table 6.3 Network Initialisation and System Bootup Parameter Access Detail

6.7 Service Data Objects (SDO)

For basic asynchronous communication Service Data Objects (SDO) are supported. The following SDO protocols are available:

- SDO expedited upload
- SDO expedited download
- SDO segmented upload
- SDO segmented download
- SDO block upload
- SDO block download

6.7.1 SDO communication object identifier

Depending on the drive node-id setting, the SDO client and server communication object identifiers (cob-id) are set according to the pre defined connection set. The client cob-id *sdo_client_cob-id* (index 0x1200, subindex 1) is set to 0x600 + node-id and the server cob-id *sdo_server_cob-id* (index 0x1200, subindex 2) is set to 0x580 + node-id.

6.7.2 SDO timeout

Although not explicitly specified in the DS 301 Standard a programmable timeout, *sdo_timeout_ms* (index 0x200A, sub-index 0) is implemented in the communication protocol. The default value for the timeout is 1 second. In case of segmented or block transfers the drive aborts the transfer and waits for a new SDO command. An emergency message is not sent.

6.7.3 SDO abort codes

The following SDO abort codes are used by the drive:

0x05040001	-	invalid command specifier
0x06010000	-	access not allowed
0x06010001	-	no read access right
0x06010002	-	no write access right
0x06020000	-	object not found error
0x06040041	-	PDO mapping error
0x06040042	-	invalid PDO size
0x06060000	-	hardware error
0x06070010	-	invalid data type
0x06090011	-	subindex out of range
0x06090030	-	value out of range
0x06090031	-	value too big
0x06090032	-	value too small
0x08000000	-	generic error
0x08000020	-	EEPROM save error (signature)
0x08000022	-	access not possible due to drive state

6.7.4 SDO Parameters

Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
SDO Communication Object Identifier												
sdo_client_cob-id	0x1200	1	no	U32	r	$0x62A^1$	-	0x1fffffff	-	Ν	С	12033
sdo_server_cob-id	0x1200	2	no	U32	r	0x5AA ¹	-	0x1fffffff	-	Ν	С	12034
SDO Timeout												
sdo_timeout_ms	0x200A	0	No	U16	rw	1000	-	-	ms	С	С	12008

 Table 6.4 SDO Parameter Access Detail

Notes:

- 1. The client COB ID is set to 0x600 + node ID on power up or reset. The node ID is read from the hex switches on the front panel of the controller.
- 2. The server COB ID is set to 0x580 + node ID on power up or reset. The node ID is read from the hex switches on the front panel of the controller.

6.8 Process Data Objects (PDO)

The drive supports up to 4 receive and up to 4 transmit Process Data Objects (PDOs). The contents can be specified using PDO mapping. The granularity of the PDO mapping is a byte.

All the PDO settings can only be changed in the pre-operational state. See 'Network Initialisation and System Bootup' for further information.

6.8.1 Communication Object Identifier

The communication object identifier (cob-id) of the PDO can be modified using the parameters <u>pdo xxxx cob-id</u>. After setting the node-id, all PDOs have a default cob-id according to the DS 301 pre defined connection set. The receive PDO cob-ids have a value of 0x200 + n * 0x100, where n is the number of the PDO from 0..3. The transmit PDO cob-ids have a value of 0x180 + n * 0x100, where n is the number of the PDO from 0..3.

Note that when changing the cob-id, the PDO has to be disabled first by setting the highest bit before the cob-id can be modified. When changing the node-id, all values are reset to the pre defined connection set settings.

6.8.2 <u>Transmission Type</u>

The behaviour of the PDO can be set using the parameters <u>pdo_xxxx_transmission_type</u>. Normally values between 1 and 240 are synchronous PDOs that are transmitted every <u>pdo_xxxx_transmission_type</u> synchronisation events (see 'Synchronisation Objects' for further information).

Remote Request PDO transmission types 252 and 253 are not supported.

Asynchronous receive PDOs are possible using transmission type 255. In this case, the new data values in the PDO are in effect immediately after reception.

For transmit PDOs the transmission type 255 is event driven, that means that any change in the drive status word will trigger the PDO transmission.

6.8.3 PDO Inhibit Time

The inhibit time can only be set for transmit PDO's. The parameter <u>pdo_xxxx_inhibit_time</u> specifies the minimum time interval between successive transmissions of the PDO message in multiples of 100µs. If this parameter is 0 then there is no minimum time interval between successive transmissions. The default value for this parameter is 0.

6.8.4 PDO Event Time

The event time is valid for transmit and receive PDO's. The parameter <u>pdo xxxx event time</u> is specified in multiples of 1ms and has a default value of 0.

For receive PDO's, the event time specifies the maximum time allowed between successive receptions of the PDO. If the event time expires before the next receive event for the PDO then a 'RPDO fault' is detected and the drive transitions to a level 2 fault state. If this parameter is 0 then there is no maximum time enforced.

For transmit PDO's, the event time specifies the maximum time between successive transmissions of the PDO. This maximum time is enforced for all types of transmit PDO. If this parameter is 0 then there is no maximum time enforced.

6.8.5 PDO mapping

The PDO mapping is the mechanism that allows the user to change the contents of the process data objects. To change the PDO mapping, the parameter <u>pdo xxxx number elements</u> should be set to 0, then the new parameters that should be mapped written in the <u>pdo xxxx mapping</u> array and then the number of mapped parameters should be written into <u>pdo xxxx number elements</u>. Make sure that not more than 8 bytes are used up in this mapping process. If trying to map more than 8 bytes into one PDO, writing of <u>pdo xxxx number elements</u> will cause an error.

6.8.6 PDO Parameters

	Parameter Name	CAN open Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
R	eceive PDO 1												
	pdo 1 st receive cob-id	0x1400	1	no	U32	rw	0x4000022A	-	-	-	С	С	12035
	pdo_1 st receive_transmission_type	0x1400	2	no	U8	rw	255	-	-	-	С	С	12036
	pdo_1 st _receive_event_time	0x1400	5	no	U16	rw	0	-	-	-	С	С	12039
	pdo_1 st receive_number_elements	0x1600	0	no	U8	rw	1	0	7	-	С	С	12040
┛	pdo_1 st _receive_mapping	0x1600	1-8	no	U32	rw	0x60400010,0,0,0,0,0,0,0	-	-	-	С	С	12041
R	eceive PDO 2												
	pdo_2 nd _receive_cob-id	0x1401	1	no	U32	rw	0xC000032A	-	-	-	С	С	12042
	pdo_2 nd _receive_transmission_type	0x1401	2	no	U8	rw	255	-	-	-	С	С	12043
	pdo_2 nd receive event time	0x1401	5	no	U16	rw	0	-	-	-	С	С	12046
	pdo_2 nd _receive_number_elements	0x1601	0	no	U8	rw	1	0	7	-	С	С	12047
	pdo_2 nd _receive_mapping	0x1601	1-8	no	U32	rw	0x60400010,0x60600008,0 ,0,0,0,0,0	-	-	-	С	С	12048
R	eceive PDO 3												
	pdo 3 rd receive cob-id	0x1402	1	no	U32	rw	0xC000042A	-	-	-	С	С	12049
	pdo 3 rd receive transmission type	0x1402	2	no	U8	rw	255	-	-	-	С	С	12050
	pdo_3 rd _receive_event_time	0x1402	5	no	U16	rw	0	-	-	-	С	С	12053
	pdo_3 rd _receive_number_elements	0x1602	0	no	U8	rw	1	0	7	-	С	С	12054
	pdo_3 rd _receive_mapping	0x1602	1-8	no	U32	rw	0x60400010,0x607A0020, 0.0.0.0.0	-	-	-	С	С	12055
R	eceive PDO 4												
Т	pdo 4 th receive cob-id	0x1403	1	no	U32	rw	0xC000042A	-	-	-	С	С	12056
Ī	pdo 4 th receive transmission type	0x1403	2	no	U8	rw	255	-	-	-	С	С	12057
ľ	pdo 4 th receive event time	0x1403	5	no	U16	rw	0	-	-	-	С	С	12060
	pdo 4 th receive number elements	0x1603	0	no	U8	rw	1	0	7	-	С	С	12061
ľ	pdo_4 th _receive_mapping	0x1603	1-8	no	U32	rw	0x60400010,0x60FF0020, 0.0.0.0.0	-	-	-	С	С	12062
Ľ							· · · · · · · ·						

SECTION 6: CANOPEN INTERFACE

Transmit PDO 1												
pdo_1 st _transmit_cob-id	0x1800	1	no	U32	rw	0x400001AA	-	-	-	С	С	12063
pdo_1 st _transmit_transmission_type	0x1800	2	no	U8	rw	255	-	-	-	С	С	12064
pdo_1 st _transmit_inhibit_time	0x1800	3	no	U16	rw	0	-	-	-	С	С	12065
pdo_1 st _transmit_event_time	0x1800	5	no	U16	rw	0	-	-	-	С	С	12067
pdo_1 st _transmit_number_elements	0x1A00	0	no	U8	rw	1	0	7	-	С	С	12068
pdo_1 st _transmit_mapping	0x1A00	1-8	no	U32	rw	0x60410010,0,0,0,0,0,0,0,0	-	-	-	С	С	12069
Transmit PDO 2												
pdo_2 nd _transmit_cob-id	0x1801	1	no	U32	rw	0xC00002AA	-	-	-	С	С	12070
pdo_2 nd _transmit_transmission_type	0x1801	2	no	U8	rw	255	-	-	-	С	С	12071
pdo_2 nd _transmit_inhibit_time	0x1801	3	no	U16	rw	0	-	-	-	С	С	12072
pdo_2 nd _transmit_event_time	0x1801	5	no	U16	rw	0	-	-	-	С	С	12074
pdo_2 nd _transmit_number_elements	0x1A01	0	no	U8	rw	1	0	7	-	С	С	12075
pdo_2 nd _transmit_mapping	0x1A01	1-8	no	U32	rw	0x60410010,0x60610008,0	-	-	-	С	С	12076
						,0,0,0,0,0						
Transmit PDO 3												
pdo_3 rd _transmit_cob-id	0x1802	1	no	U32	rw	0xC00003AA	-	-	-	С	С	12077
pdo_3 rd _transmit_transmission_type	0x1802	2	no	U8	rw	255	-	-	-	С	С	12078
pdo_3 rd _transmit_inhibit_time	0x1802	3	no	U16	rw	0	-	-	-	С	С	12079
pdo_3 rd _transmit_event_time	0x1802	5	no	U16	rw	0	-	-	-	С	С	12081
pdo_3 rd _transmit_number_elements	0x1A02	0	no	U8	rw	1	0	7	-	С	С	12082
pdo_3 rd _transmit_mapping	0x1A02	1-8	no	U32	rw	0x60410010,0x60640020,0	-	-	-	С	С	12083
						,0,0,0,0,0						
Transmit PDO 4												
pdo_4 th _transmit_cob-id	0x1803	1	no	U32	rw	0xC00003AA	-	-	-	С	С	12084
pdo_4 th transmit transmission type	0x1803	2	no	U8	rw	255	-	-	-	С	С	12085
pdo_4 th transmit inhibit time	0x1803	3	no	U16	rw	0	-	-	-	С	С	12086
pdo_4 th transmit event time	0x1803	5	no	U16	rw	0	-	-	-	С	С	12088
pdo_4 th _transmit_number_elements	0x1A03	0	no	U8	rw	1	0	7	-	С	С	12089
pdo_4 th _transmit_mapping	0x1A03	1-8	no	U32	rw	0x60410010,0x606C0020,	-	-	-	С	С	12090
						0,0,0,0,0,0						

Table 6.5 PDO Parameter Access Detail

6.9 Synchronisation

The synchronisation method in CANopen is implemented through synchronisation messages that are sent by a sync producer (normally a PLC controller) and that are received by the drive(s).

Figure 6.5 Typical CAN system

The picture shows a typical CAN system in Operational state with the PDOs and synchronisation messages sent in a cyclic manner. In every cycle the PLC controller receives the actual values, calculates the new demand values and transmits the new demand values to the drive(s). Then the synchronisation message enables the new demand values in the drive(s) and the new actual values are sampled and transmitted via the bus.

The communication identifier (cob-id) of the synchronisation messages can be changed with the parameter *sync_message_cob-id* (index 0x1005, subindex 0). The time in between sync messages is called communication cycle period. It can be changed by writing to the parameter *sync_communication_cycle_period* (index 0x1006, subindex 0). It contains the synchronisation time in microseconds. The maximum allowed timeout between synchronisation messages is *sync_communication_cycle_period* multiplied by 1.5. If a different timeout value is desired, the parameter *sync_maximum_number_missing* (index 0x2005, subindex 0) can be used. If it is set to a non-zero value, the synchronisation timeout is *sync_communication_cycle_period* multiplied by *sync_maximum_number_missing*. If *sync_maximum_number_missing* is set to zero, the timeout is *sync_communication_cycle_period* multiplied by 1.5

6.9.1 Synchronisation Parameters

Parameter Name	CANopen Index	CANopen sub-indev	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
Synchronisation												
sync_message_cob_id	0x1005	0	no	U32	rw	128	-	0x000007FF	-	С	С	12115
sync_communication_cycle_period	0x1006	0	no	U32	rw	0	-	-	μs	С	С	12110
sync_maximum_number_missing	0x2005	0	no	U8	rw	0	-	-	-	С	С	12111

Table 6.6 Synchronisation Parameter Access Detail

6.10 Communication Profile Objects

6.10.1 Error reporting

Any errors in the drive are reported using emergency messages. The cob-id can be modified using the parameter *emergency_message_cob-id* (index 0x1014, subindex 0). The last error is available in the parameter *error_register* (index 0x1001, subindex 0).

A list of errors can be read using the parameter *pre-defined_error_field* (index 0x1003, subindex 1 - 8). The number of stored errors can be read through *maximum_saved_errors* (index 0x1003, subindex 0). By writing a 0 to *maximum_saved_errors*, the error list can be deleted. See CiA Draft Standard 301 for further information.

6.10.2 Heartbeat Protocol

For protection purposes in case of a non functioning CAN network the heartbeat producer protocol is implemented. By writing a non zero time value in milliseconds to the parameter *heartbeat_producer_time* (index 0x1017, subindex 0) the transmission of heartbeat messages is enabled.

6.10.3 Storing and restoring Parameters

The drive supports storing and restoring of parameter settings to and from EEPROM. This is done by writing a signature to certain parameters.

Storing parameters to EEPROM is done by writing 0x65766173 (signature 'save') to the parameter *store_all_parameters* (index 0x1010, subindex 1). This saves all parameters to EEPROM. In order to only save the communication parameters or only the drive parameters to EEPROM, the parameters *store_communication_parameters* (index 0x1010, subindex 2) and *store_application_parameters* (index 0x1010, subindex 3) can be used.

In order to restore parameters to default values the value 0x64616f6c (signature 'load') has to be written to *restore_all_parameters* (index 0x1011, subindex 1). To restore only communication or drive parameters the *restore_communication_parameters* (index 0x1011, subindex 2) and *restore_application_parameters* (index 0x1011, subindex 3) can be used. Please not that a 'Reset Communication' or 'Reset Node' is necessary in order to restore the default values after writing the signatures. Refer to 'Network Initialisation and System Bootup' for further information.

6.10.4 Drive Identification

For identification purposes in a CAN network various parameters are provided. The parameter *device_type* (index 0x1000, subindex 0) contains the value 0x00020192 which means servo drive (0x0002) according to draft standard 402 (0x0192 in hexadecimal). <u>manufacturer_device_name</u> (index 0x1008, subindex 0) contains the device name, <u>manufacturer_hardware_version</u> (index 0x1009, subindex 0) the hardware revision and <u>manufacturer_software_version</u> (index 0x100a, subindex 0) the software version as visible strings.

6.10.5 Identity Object

The array *identity_object* (index 0x1018, subindex 1 - 4) contains the vendor id (0x28 for Moog), the product code, the revision number and the serial number of the drive.

6.10.6 Communication Profile Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
E	rror reporting												
	emergency_message_cob-id	0x1014	0	no	U32	rw	0xAA	-	-	-	С	С	12029
	error_register	0x1001	0	no	U8	r	-	-	-	-	Ν	С	12011
	pre-defined_error_field	0x1003	1-8	no	U32	r	-	-	-	-	Ν	С	12014
	maximum_saved_errors	0x1003	0	no	U8	rw	0	-	-	-	С	С	12013
Н	leartbeat Protocol												
	heartbeat_producer_time	0x1017	0	no	U16	rw	0	-	-	ms	С	С	12030
S	toring and restoring Parameters												
	store_all_parameters	0x1010	1	no	U32	rw	1	-	-	-	Ν	С	12021
	store_communication_parameters	0x1010	2	no	U32	rw	1	-	-	-	Ν	С	12022
	store_application_parameters	0x1010	3	no	U32	rw	1	-	-	-	Ν	С	12023
	restore_all_parameters	0x1011	1	no	U32	rw	1	-	-	-	Ν	С	12024
	restore_communication_parameters	0x1011	2	no	U32	rw	1	-	-	-	Ν	С	12025
	restore_application_parameters	0x1011	3	no	U32	rw	1	-	-	-	Ν	С	12026
D	Drive Identification												
	device_type	0x1000	0	no	U32	r	0x00020192	-	-	-	F	С	12010
	manufacturer_device_name	0x1008	0	no	string	r	Moog DS2100 CANopen Servodrive	-	-	-	F	С	12016
	manufacturer_hardware_version	0x1009	0	no	string	r	G361 CAN Control Card C27440-001	-	-	-	F	С	12017
	manufacturer_software_version	0x100A	0	no	string	r	G361_CAN_Vx.x dd.mmm.yyyy	-	-	-	Ν	С	12018
I	lentity Object												
	identity_object	0x1018	1-4	no	U32	rw	0x00000028,0,1,1	-	-	-	F	С	12032

Table 6.7 Communication Profile Parameter Access Detail

6.11 CAN Indicators

Two LEDs are provided for CAN state and error information.

6.11.1 Run Indicator

The green Run indicator changes its blinking pattern depending on the CAN state.

Pre- Opreational	Run LED	
Operational	Run LED	on
Stopped	Run LED	on
Node-ID invalid	Run LED Error LED	
		1 second

Figure 6.6 CANopen Run indicator

When operational the Run indicator is on continuously, when the drive is in the Pre-Operational state it blinks with about 2.5 Hertz and in the Stopped state there is a short flash about every second. In every other state the Run indicator is off.

6.11.2 Error Indicator

No Error	Error LED	on off►
Error Frame Warning	Error LED	on off
Guard Event	Error LED	on off
Sync Error	Error LED	on off
Bus off	Error LED	on
		1 second

The red Error indicator supplies information on errors on the CAN bus.

Figure 6.7 CANopen Error indicator

When the Error indicator is off the drive is CAN bus is working with no problems. When the number of error frames on the CAN bus has reached the warning level there is one short flash with a one second pause on the Error indicator. When the controller suspects it is the source of the error frames it goes bus off automatically. This is indicated by the Error indicator on continuously.

In case of a guard event or a heartbeat event the Error indicator is flashing twice with a one second pause.

When a Synchronisation message hasn't been received in time this is indicated with a triple flash and a one second pause.

6.12 Data Type Parameters

For reference purposes and for mapping of dummy entries into PDOs, the following parameters are available:

6.12.1 Data Type Parameters

Parameter Name	CANopen Index	CANopen sub-indev	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
data_type_u08	0x0005	0	yes	U32	r	-	-	-	-	Ν	С	12093
data_type_s08	0x0002	0	yes	U32	r	-	-	-	-	Ν	С	12094
data_type_u16	0x0006	0	yes	U32	r	-	-	-	-	Ν	С	12095
data_type_s16	0x0003	0	yes	U32	r	-	-	-	-	Ν	С	12096
data_type_u24	0x0016	0	yes	U32	r	-	-	-	-	Ν	С	12097
data_type_s24	0x0010	0	yes	U32	r	-	-	-	-	Ν	С	12098
data_type_u32	0x0007	0	yes	U32	r	-	-	-	-	Ν	С	12099
data_type_s32	0x0004	0	yes	U32	r	-	-	-	-	Ν	С	12100
data_type_str	0x0009	0	yes	U32	r	-	-	-	-	Ν	С	12101
data_type_f32	0x0008	0	yes	U32	r	-	-	-	-	Ν	С	12102
data_type_f64	0x0011	0	yes	U32	r	-	-	-	-	Ν	С	12103
data_type_pdo_communication	0x0020	0	No	U8	r	-	-	-	-	Ν	С	12104
data_type_pdo_mapping	0x0021	0	No	U8	r	-	-	-	-	Ν	С	12105
data_type_sdo_parameter	0x0022	0	No	U8	r	-	-	-	-	Ν	С	12106
data_type_identity_object	0x0023	0	No	U8	r	-	-	-	-	Ν	С	12107

Table 6.8 Data Type Parameter Access Detail

6.13 Additional Functionality Configuration

The additional functionality described in this section is not specified in the CANopen standard DS301.

6.13.1 CAN Configuration Parameter

The parameter <u>*can_configuration*</u> (index 0x2008, sub_index 0) is used to configure the additional functionality. The parameter is a bit mask with the individual bit definitions as shown in the table below:

Bit	Description
7 (MSB)	Reserved
6	Reserved
5	Transmit type 254/255 PDO's only if data has changed
4	Calculate SYNC period
3	Auto-start (transition to Operational state without start node command)
2	Transmit SYNC message
1	Reserved
0 (LSB)	Transmit Boot-Up Complete message

The default value for the parameter <u>can_configuration</u> is 1. The following sections describe the effects of setting the configuration bits.

6.13.2 Boot-Up Complete

If bit 0 of parameter *can_configuration* is set to 0 then the Boot-Up Complete message is not transmitted.

If bit 0 of parameter <u>can configuration</u> is set to 1 then the Boot-Up Complete message is transmitted. This is the default state because the boot-up complete message is specified in DS301 as mandatory.

6.13.3 SYNC Transmit

In some applications it may be necessary for the DS2100 to be the SYNC master. This can be achieved by setting bit 1 of parameter <u>can configuration</u> to 1.

The time period for the transmitted SYNC message is programmable using the parameter sync pre divider for sync transmission (index 0x2007, sub-index 0). This parameter specifies the SYNC period in multiples of 2ms. The default value for this parameter is 5 (10ms).

Note that the SYNC will only be transmitted if the CANopen state machine is in Operational mode.

6.13.4 Auto-Start

If the application does not have a NMT master then the drive CANopen state machine can be configured to transition directly to Operational mode after power-up or reset. This can be achieved by setting bit 3 of parameter *can_configuration* to 1.

6.13.5 Calculate SYNC Period

This feature enables the drive to calculate the SYNC period from the first *n* SYNC messages received by the DS2100. The number of SYNC messages used to calculate the SYNC period is programmable via the parameter *sync_number_pulses_measured* (index 0x2006, sub-index 0). The default value for this parameter is 5.

This feature is enabled by setting bit 4 of parameter <u>can_configuration</u> to 1.

6.13.6 Check for PDO Data Changed

This feature is only used for type 254 and 255 transmit PDO's and enables the frequency of transmit PDO's to be reduced by checking for a change in the data content before transmitting the PDO. When enabled, by setting bit 5 of parameter *can configuration* to 1, this feature is used for all type 254 and 255 PDO's configured in the drive. The data content is compared to the data the last time the PDO was transmitted and the PDO is only transmitted if the data has changed.

6.13.7 Recovery From Bus-Off

This allows automatic recovery from a CAN controller bus-off condition by waiting for a programmable period of time from the bus-off event before re-enabling the CAN bus on the drive. The time before re-enabling is set by parameter *can_bus-off_recovery_time_(ms)* which is defined in multiples of 1ms. If this parameter is set to 0 then the bus-off recovery function is inactive. The default value for this parameter is 0.
6.13.8 Additional Functionality Configuration Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
C	AN Configuration												
	can configuration	0x2008	0	no	U8	rw	1	-	-	-	С	С	12114
	sync pre divider for sync transmission	0x2007	0	no	U8	rw	5	1	-	-	С	С	12113
	<u>sync number pulses measured</u>	0x2006	0	no	U8	rw	5	2	-	-	С	С	12112
	can_bus-off_recovery_time_(ms)	0x200D	0	no	U32	rw	0	-	2000000	ms	С	С	12121

Table 6.9 Additional Functionality Configuration Parameter Access Detail

PAGE INTENTIONALLY BLANK

SECTION 7: CANOPEN DRIVE PROFILE: DS402

TABLE OF CONTENTS

SECTION 7:	CANOPEN DRIVE PROFILE: DS402	
7.1 INTRO	DDUCTION	
7.2 Refe	RENCES	
7.3 ACR0	NYMS AND ABBREVIATIONS	
7.4 NAM	ING /FORMAT CONVENTIONS	
7.5 Revis	SION HISTORY	
7.6 Over	VIEW	
7.7 Emer	GENCY MESSAGES	
7.8 Pred	EFINED OBJECTS	
7.9 Mote	DR/DRIVE PARAMETERS	
7.9.1	Motor / Drive Parameters	
7.10 Devi	CE CONTROL	
7.10.1	Device Control Parameters	
7.11 Fact	ORS GROUP	
7.11.1	Factor Group Parameters	
7.12 Dire	CT TORQUE MODE (MANUFACTURER SPECIFIC)	
7.12.1	Direct Torque Mode Parameters	
7.13 DIRE	CT VELOCITY MODE (MANUFACTURER SPECIFIC)	
7.13.1	Direct Velocity Mode Parameters	
7.14 Prof	ILE VELOCITY MODE	
7.14.1	Profile Velocity Mode Parameters	
7.15 DIRE	CT POSITION MODE (MANUFACTURER SPECIFIC)	
7.15.1	Direct Position Mode Parameters	
7.16 Prof	ILE POSITION MODE	
7.16.1	Profile Position Mode Parameters	
7.17 Inter	RPOLATED POSITION MODE	
7.17.1	Interpolated Position Mode Parameters	
7.18 Hom	NG MODE	
7.18.1	Homing Mode Parameters	
7.19 VELC	CITY CONTROL FUNCTION	
7.19.1	Velocity Control Parameters	
7.20 Post	ION CONTROL FUNCTION	
7.20.1	Position Control Parameters	

7.1 Introduction

CAN is an abbreviation for the Controller Area Network. This is a high-speed serial interface that was designed for use in Automotive and Industrial applications.

The DS2100 CAN implementation is based on standards from the CANOpen group within the CiA (CAN in Automation) organisation. The two standards of particular relevance are: -

- DS301 CANOpen Application Layer and Communication Profile Version 4.0.2, 13-Feb-2002
- DS402- CANOpen Device Profile Drives and Motion Control Version 2.0, 26-July-2002.

These standards are available from the CiA at www.can-cia.de

This DS301 implementation has been outlined in the previous section. The section outlines the DS402 implementation. The chapter does not aim to duplicate all the information that is contained in the CANOpen standards, but rather will outline the functionality and parameter sets which have been implemented, with specific emphasis on the areas where the implementation differs from the standard. Each of these standards outline a profile (i.e. a definition of parameters, values, functionality, etc...), which outlines what is required to configure and use drive functions over CAN.

- The DS301 standard is particularly concerned with set-up of the parameters relating to the CAN itself, in order to provide communication to the drive, and has already been outlined.
- The DS402 standard builds on top of this standard to implement a drive profile, by outlining functionality (e.g. homing mode, position mode, etc....), and the parameters relating to these drive functions. The main advantage of such a profile is with regard to system integration and device standardisation, since by implementing a profile, standard drive functionality, parameter numbers, etc.. is implemented on the Moog drive.

The subsections of this manual are in a similar order to their corresponding sections in the CiA standard, allowing for easy comparison and cross-referencing by the user.

7.2 References

Ref Number	Description	Rev
1	CiA Draft Standard 301. CANOpen Application Layer and Communication Profile	Version 4.0.2, 13-Feb-2002
2	CiA Draft Standard Proposal 402. CANOpen Device Profile Drives and Motion Control	Version 2.0, 26-July-02

7.3 Acronyms and Abbreviations

CAN	Controller Area Network; Internally standardized serial bus system,
CiA	CAN in Automation
COB	Communication Object; A unit of transportation in a CAN network
COB-ID	Communication Object Identifier; Used to uniquely identify each COB in a CAN Network.
DTM	Direct Torque Mode
PDO	Process Data Object
RPDO	Receive Process Data Object
SDO	Service Data Object
TPDO	Transmit Process Data Object

7.4 Naming /Format Conventions

- Each section includes an "*issues*" sub-section. This sections highlights assumptions made on items not defined in DS402, interpretations of DS402 issues, manufacturer specific parameters, minor items of information, etc...
- When referring to parameters these are indicated by name, and their parameter number. If the parameter number is such that it has a non-zero sub index this is also included.

e.g. *ds402 position range min* (0x607B/1)

The Type of the various parameters is indicated by abbreviations, e.g. U32 corresponds to an unsigned 32 bit quantity, S08 corresponds to a signed 8 bit quantity, etc....

7.5 Revision History

Number	Description	Version	Date
1	First Draft of Document	0.1	28-11-03
2	Second Draft of Document, update CAN wiring, remove 301 section, Add DPM, Add Sequence move Diagrams, Update with DVT issues.	0.2	4-3-04
3	Third Draft of Document, Remove wiring section, update with parameter sets, remove homactlow	0.3	17-3-04
4	Fourth Draft of Document, Add Factor error table, rename parameters, remove comments, fix minor errors.	0.4	22-3-04
5	Add DPM without trigger, removed index pulse set up, Add motor name, home error window, landscape tables, Factors examples and formulae, and interpolation diagram.	0.5	13-4-04
6	Minor Updates (changing modopr, Not saving modopr, etc)	0.6	21-4-04

7.6 Overview

DS402 particularly focuses on the demand generation aspects of motion control. The standard does not define parameters for motor or drive configuration, nor does it define parameters for control loop configuration. These manufacturer specific parameters are contained in manufacturer specific records or parameter sets, with a parameter number assigned by DS402. The diagram below shows the DS402 modes that are implemented for the DS2100 drive.

Figure 7.1 Functional DS402 Architecture.

7.7 Emergency Messages

Error messages are triggered by internal errors in the Drive. An Error Code field within an error message defines the cause of the error. DS402 extends the list of error codes listed in DS301 to more specific drive related errors. The following Emergency messages will be sent, when drive faults, corresponding to F1..F15 occur.

Emer. Msg	ErrReg	DS402 Meaning	Description
0x2340	0x03	Current on output side: Short Circuit	Power Stage Short Circuit Fault
0x3210	0x05	Voltage: DC Link Over-voltage	DC Bus Over Voltage Fault
0x2310	0x03	Device Hardware: Power Section	Regen. Fault
0x4110	0x09	Temperature: Excess Ambient Temp.	Ambient Over temperature Fault
0x4210	0x09	Temperature: Excess Temp. Device	Bridge Over temperature Fault
0x4310	0x09	Temperature: Excess Temp. Drive	Motor Over temperature Fault
0x7305	0x01	Add Modules: Sensor: Incremental sensor 1 fault.	Encoder Fault
0x7303	0x01	Add Modules: Sensor: Resolver 1 Fault	Resolver Fault
0x5100	0x01	Device Hardware: Supply	Logic/Analog Supply Fault
0x5530	0x01	Device Hardware: Non-volatile data memory	Database / NVM Fault
0x8100	0x11	Monitoring : Communication	CAN Fault
0x3200	0x05	Voltage: DC link voltage	DC Bus Fault
0x6100	0x01	Device Software: internal software	Program Fault
0x2300	0x03	Current on device output side	Current Loop Fault
0x5200	0x01	Device Hardware: Control	Board Fault

Table 7.1 List of 402 Emergency Messages

7.8 Predefined Objects

Some default values for communication objects that are not listed in the communication profile [1] are defined by DS402 [2]. The mandatory mappings of the Control Word into the Receive PDO, and the Status Word into the Transmit PDO have been implemented. In addition since 4 RPDO and 4 TPDO are implemented, the mappings for this Objects are also implemented, however only the first RPDO and TPDO are not inhibited, the other PDO's are inhibited by default. The following table lists the predefined object parameters that are implemented :-

Index	Name	Comment
0x1000	device type	Value = $0x20192$, (servo drive + profile = $0x192 = 402$)
0x1001	error register	Bit 5 the device profile specific bit is not used.
$0 \times 1400 /$	rndo Comm. Set un	
0x1400/	ndo 1 st receive cob.id	0x40000201 (No RTR 200 + Nodide)
0x1400/1	pdo 1 st receive transmission type	255 (Profile Specific)
0x1400 / 2	pdo 2 nd receive cob-id	0xC0000301 (Inhibit No RTR 300 + Nodide)
0x1401/1	ndo 2 nd receive transmission type	255 (Profile Specific)
0x1401/2	pdo 2 rd receive cob-id	0xC0000401 (Inhibit No RTR 400 + Nodide)
0x1402/2	$pdo 3^{rd}$ receive transmission type	255 (Profile Specific)
0x1403/1	pdo 5 receive cob-id	0xC0000501 (Inhibit No BTR 500 + Nodide)
0x1403 / 2	$pdo 4^{th}$ receive transmission type	255 (Profile Specific)
0x1600 /	rndo manning	
0x1600/0	ndo 1 st receive number elements	Default value - 1
0x1600/0	pdo 1 receive number crements	Default value = 1 0x60 40 00 10 (ct1402)
0x1600 / 1	ndo 2 nd receive number elements	2
0x1001 / 0	pdo 2 nd receive mapping	2 0x60 40 00 10 (ct1402)
1+2	pd0 2 receive mapping	$0x60,60,00,08 \pmod{10}$
0x1602/0	pdo 3 rd receive number elements	2
0x1602 /	pdo 3 rd receive mapping	0x60.40.00.10 (ctl402)
1+2		0x60,7a,00,20 (ds4tarpos)
0x1603 / 0	pdo 4 th receive number elements	2
0x1603 /	pdo 4 th receive mapping	0x60,40,00,10 (ctl402)
1+2		0x60,ff,00,20 (vlmtarvel)
0x1800 /	tpdo Comm. Set-up	
0x1800 / 1	pdo 1 st transmit cob-id	0x40000181 (No RTR, 180 + Nodide)
0x1800 / 2	pdo 1 st transmit transmission type	255 (Profile Specific)
0x1801 / 1	pdo 2 nd transmit cob-id	0xC0000281 (Inhibit, No RTR, +280 + Nodide)
0x1801 / 2	pdo 2 nd transmit transmission type	255 (Profile Specific)
0x1802 / 1	pdo 3 rd transmit cob-id	0xC0000381 (Inhibit, No RTR, + 381 + Nodide)
0x1802 / 2	pdo 3 rd transmit transmission type	255 (Profile Specific)
0x1803 / 1	pdo 4 th transmit cob-id	0xC0000481 (Inhibit, No RTR, 480 + Nodide)
0x1803 / 2	pdo 4 th transmit transmission type	255 (Profile Specific)
0x1A00 /	tpdo mapping	
0x1A00 / 0	pdo 1 st transmit number elements	1
0x1A00 / 1	pdo 1 st transmit mapping	0x60,41,00,10 (sta402)
0x1A01 / 0	pdo 2 nd transmit number elements	2
0x1A01 / 1	pdo 2 nd transmit mapping	0x60,41,00,10 (sta402)
		0x60610008 (modoprdis)
0x1A02 / 0	pdo 3 rd transmit number elements	2
0x1A02 / 1	pdo 3 rd transmit mapping	0x60,41,00,10 (sta402)
0.1402./0	a ath a star a star a	0x60,64,00,20 (pcposact)
0x1A03 / 0	pdo 4 ^{eee} transmit number elements	2
0X1A03 / 1	puo 4 transmit mapping	0x00,41,00,10 (sta402) 0x60 6c 00 20 (vevelact)

Table 7.2 List of predefined objects

GENERAL ISSUES

- 1. The standard lists all four RPDO's and TPDO's as being enabled. This is considered to be potentially confusing and also redundant, and so only the first PDO is enabled, the others, though configured, are inhibited by setting the inhibit bit in the COB-ID field.
- 2. The transmission type of 255, causes the PDO to be transmitted from the drive, whenever the status word changes.

7.9 Motor/Drive Parameters

All DS402 motor parameters are optional. An Error code, that corresponds to the lower 16 Bits of the pre-defined error field (0x1003), has been implemented.

Index	Туре	Name
0x603F	U16	Error Code

The manufacturer specific motor data record has been implemented and is outlined in the Motor/Drive parameter table on the next page. The user should refer to the relevant section of the manual, for detailed information on each parameter.

All DS402 drive parameters are optional. The "Supported Drive Modes" parameter has been implemented, with the following modes supported.

Figure 7.2 Supported Drive Modes

The drive catalog address has been implemented as shown below. The manufacturer specific drive data record has been implemented and is outlined in the Motor/Drive parameter table on the next page. The user should refer to the relevant section of the manual, for detailed information on each parameter.

Index	Name	Туре	Comment
0x6505	http drive catalog address	String	Default value of www.moog.com

7.9.1 Motor / Drive Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
C	COMMON ENTRIES												
	ds402 error code	0x603F	0	yes	u16	r	0	-	-	none	Ν	А	4234
N	10TOR DATA RECORD												
	motor name	0x6410	1	no	string	r/w	-	-	-	none	С	Α	1074
	motor poles	0x6410	2	no	u16	r/w	12	2	-	none	Е	Α	1072
	motor Rtt	0x6410	3	no	f32	r/w	2.4	1.0e-9	-	Ohms	Е	А	1073
	motor Lq	0x6410	4	no	f32	r/w	5.180e-3	1.0e-9	-	Н	Е	А	1075
	motor Ld	0x6410	5	no	f32	r/w	4.920e-3	1.0e-9	-	Н	Е	А	1076
	motor ke	0x6410	6	no	f32	r/w	1.16	1.0e-9	-	V/rad/s	Е	А	1077
	motor max current	0x6410	7	no	f32	r/w	24.0	0.1	-	А	Е	Α	1078
	motor max velocity	0x6410	8	no	f32	r/w	1000.0	0.0	20000.0	rad/s	Е	Α	1082
	motor max continuous rms current	0x6410	12	no	f32	r/w	1000.0	0.1	1000.0	А	С	А	1087
Γ	DRIVE DATA												
	ds402 supported drive modes	0x6502	0	yes	u32	r	0xF0065 MOD402SUP	-	-	none	N	A	1649
1	ds402 http drive catalog	0x6505	0	no	string	r/w	"www.moog.com"	-	-	none	F	А	4235
	address												
Γ	DRIVE DATA RECORD												
	brake lock to disable timeout	0x6510	1	no	f32	r/w	0.0	0.0	100.0	S	С	A	1004
	enable to brake release timeout	0x6510	27	no	f32	r/w	0.0	0.0	100.0	S	С	Α	1014
	quickstop mode	0x6510	2	no	u08	r/w	1 (i.e. disable)	-	-	none	С	A	1013
	internal loop demand	0x6510	3	yes	s32	r	-	-	-	inc	Ν	Α	1034
	resolver position	0x6510	4	yes	s16	r	-	-	-	inc	Ν	Α	1057
	torque max limit	0x6510	5	no	f32	r/w	9000	0	10000	Nm	С	А	1118
	manual mode current limit	0x6510	6	no	f32	r/w	10.0	0.0	100.0	%	С	Α	1133

MOOG

SECTION 7: CANOPEN DRIVE PROFILE : DS402

DS2100 User's Manual

manual mode velocity limit	0x6510	22	no	f32	r/w	10.0	0.0	100.0	%	С	А	4248
current limit mask	0x6510	7	no	u16	r/w	Brg,Mot,Amb,I ² T	-	-	none	Е	А	1135
standby velocity	0x6510	8	no	f32	r/w	1.0	0.05	1000.0	rad/s	С	А	1138
velocity rampdown time limit	0x6510	9	no	f32	r/w	1.0	0	1000.0	S	С	А	1143
velocity actual	0x6510	10	yes	f32	r	-	-	-	inc/T _{samp}	Ν	А	1151
position actual	0x6510	11	yes	s32	r	-	-	-	inc	Ν	А	1154
velocity command	0x6510	12	yes	f32	r	-	-	-	inc/T _{samp}	Ν	А	1156
velocity command acceleration limited	0x6510	13	yes	f32	r	0	-	-	inc/T _{samp}	Ν	А	1157
velocity filter cutoff factor	0x6510	14	no	f32	r/w	0.25	0.0	100.0	none	С	А	1164
velocity filtered	0x6510	15	yes	f32	r	-	-	-	inc/T _{samp}	Ν	А	1165
position feedback	0x6510	16	no	u08	r/w	1	0	2	none	С	А	1168
velocity feedback	0x6510	24	no	u08	r/w	1	0	2	none	С	А	1169
velocity maximum	0x6510	28	no	f32	r/w	1000	0	20000	rad/s	С	А	1800
velocity limit	0x6510	30	no	f32	r/w	1000	0	20000	rad/s	С	А	1802
acceleration limit	0x6510	17	no	f32	r/w	1000000	0	-	rad/s ²	С	А	1335
deceleration limit	0x6510	23	no	f32	r/w	1000000	0	-	rad/s ²	С	А	1669
deceleration limit – quickstop	0x6510	25	no	f32	r/w	1000000	0	-	rad/s ²	С	А	1670
deceleration limit - fault	0x6510	26	no	f32	r/w	1000000	0	-	rad/s ²	С	А	1671
torque limit	0x6510	19	yes	u16	r/w	-	0	0xFFFF	none	Ν	А	1581
actual torque in Nm	0x6510	20	yes	f32	r	-	-	-	Nm	N	А	1583
brake control	0x6510	21	no	u16	r/w	1 (internal control)	-	-	none	С	А	1603
brake fault control	0x6510	18	no	u16	r/w	1 (brake if fault)	-	-	none	С	А	1505

7.10 Device Control

The following table lists the parameters that are implemented in the device control section of the device profile.

Index	Туре	Name
0x6040	U16	ds402 Control word
0x6041	U16	ds402 Status word
0x6060	S08	ds402 Modes of Operation
0x6061	S08	ds402 Modes of Operation Display

Table 7.3 Table of drive control related parameters

The state machine as defined in DS402 has been implemented. The state machine is as shown below: -

Figure 7.3 State Machine.

The control word has a number of bits that depend on the mode of operation that has been selected for the drive, and a number of bits that control the transitions of the state machine. The bits of the control word are outlined below: -

Command Brake Fault control Rese		Fault Reset	Enable operation	Quick stop	Enable voltage	Switch on	Transitions
Shutdown	Х	0	Х	1	1	0	2,6,8
Switch on	Х	0	0	1	1	1	3*
Switch on	Х	0	1	1	1	1	3**
Disable voltage	Х	0	Х	Х	0	0 1	
Quick stop	Х	0	Х	0	1 X		7,10,11
Disable operation	Х	0	0	1	1	1	5
Enable operation	Х	0	1	1	1	1	4,16
Fault reset	Х	\uparrow	Х	Х	Х	Х	15
Apply Brake	1	Х	Х	Х	Х	Х	In any state***
Release Brake	\downarrow	Х	Х	Х	Х	Х	In any state***

Bits 0...3, and Bit 7 in the control word control the transitions between the drive states. The table below lists the commands that are issued by setting the appropriate control word bits.

Figure 7.5 Control Word Commands/Transitions

Bits marked X are irrelevant except that a transition on 'brake control' will always cause the indicated action * ... In the state SWITCHED ON the drive executes the functionality of this state ** ... No functionality in the state SWITCHED ON

*** .. The brake control will cause the indicated action except in the START or NOT READY TO SWITCH ON

The status word describes the state of the drive. The tables below lists the meaning of each bit, with later sections outlining the operation mode specific bits, and the state of the drive, indicated by the settings of these bits.

Bit	Description
0	Ready to switch on
1	Switched on
2	Operation enabled
3	Fault
4	Voltage enabled
5	Quick stop
6	Switch on disabled
7	Warning
8	Not used
9	Remote
10	Target reached
11	Internal limit active
12 – 13	Operation mode specific
14	Not used
15	Brake applied

Value (binary)	State
xxxx xxxx x0xx 0000	Not ready to switch on
xxxx xxxx x1xx 0000	Switch on disabled
xxxx xxxx x01x 0001	Ready to switch on
xxxx xxxx x01x 0011	Switched on
xxxx xxxx x01x 0111	Operation enabled
xxxx xxxx x00x 0111	Quick stop active
xxxx xxxx x0xx 1111	Fault reaction active
xxxx xxxx x0xx 1000	Fault

Figure 7.6 Status Word Bits

The modes of operation reflect the supported drive modes listed earlier, and can have the following values.

Value	Description
-4	Direct Position Mode (without trigger)
-3	Direct Position Mode (with trigger)
-2	Direct Velocity Mode
-1	Direct Torque Mode
1	Profile Position Mode
3	Profile Velocity Mode
6	Homing Mode
7	Interpolated Position Mode

Table 7.4 Table of modes of operation values

GENERAL ISSUES

- 1. The Mode of operation is not saved to Non-Volatile Memory, and must be set after power-up/reset.
- 2. Changing the mode of operation, changes the demand value for the loop, dependent on the mode of operation selected :-
 - Switching to Position Mode, the current position is sampled. The demand (not target value) is set to this value, to avoid large jumps in demand value. Start new move, by setting set-point bit, or changing target.
 - Switching to Velocity Mode, the demand (not target value) is set to zero. Must write to target to set velocity.
 - Switch to Torque Mode, the demand (not target value) is set to zero. Must write to target to set torque.
- 3. An additional transition directly from Ready to Switch-On to Operation Enable is allowed, and is listed as transition 17.

NOTE:- Upon request of a transition to the operation-enabled state, the drive checks if an enable is allowed (e.g. Hardware enable is set, and Bus is active), otherwise the transition does not occur.

- 4. Default operation of the quickstop is to transition to switch on disabled state, since the default value of quickstop_mode=1. By setting quickstop_mode=0, this can be altered to remain in the quickstop state, after quickstop, and thus Transition 16 listed in DS402 can occur, if after/during quickstop ctl402 is set to 0xF
- 5. The warning bit is set in the status word, whenever warnings occur in the drive (i.e. U1..U8) as displayed on the drives 7 segment display.

- 6. The manufacturer specific bits are not used or set in the control or status words.
- 7. The remote bit indicates if the device is in local or remote operation. Local mode being where commands / Inputs sent over CAN are ignored by the drive, but status information is still sent by the drive. This bit is set constantly in the DS2100 implementation since CAN is always used to command the drive.
- 8. The internal limit active bit is set only in the case of current limiting.
- 9. The bits that are dependent on mode of operation are outlined in their appropriate relevant sections.
- 10. Enabling/Disabling of the drive via the serial text interface, GUI toolbar, should not be mixed with control of the drive via the 402 state machine. As serial text modifications will not affect the 402 state machine.

SECTION 7: CANOPEN DRIVE PROFILE: DS402

7.10.1 Device Control Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
C	OMMON ENTRIES												
	ds402 control word	0x6040	0	yes	u16	r/w	0	-	-	none	Ν	А	1650
Ľ	ds402 status word	0x6041	0	yes	u16	r	0	-	-	none	N	A	1651
	ds402 modes of operation	0x6060	0	yes	s08	r/w	0	-	-	none	Ν	A	1652
	ds402 modes of operation display	0x6061	0	yes	s08	r	0	-	-	none	Ν	A	1653

7.11 Factors Group

A group of parameters are defined in DS402 for scaling between physical units used by the user, and the internal units of the drive. The group consists of two sets of parameters. These consist of a set of input parameters, which when combined, generate a set of output factors / parameters. The input parameters include notation and dimension indices, position and velocity encoder resolutions, feed constant, and gear ratio.

- A notation index indicates the power of ten, relating to the specific index. (e.g. $2 \Rightarrow 10^2$)
- A dimension indicates the SI unit relating to the specific index. (e.g. radians, degrees, etc...)

The outputs factors are used to scale from various physical units to internal units, as shown in the diagram below: -

Figure 7.7 Factor Group overview.

Fractional types are implemented as arrays consisting of unsigned 32 values for numerator and denominator. The input parameters are listed below: -

Index	Name	Туре	Comment
0x6089	ds402 position notation index	S08	Default value = 0
0x608A	ds402 position dimension index	U08	Default value = $0x41$, i.e. degrees.
0x608B	ds402 velocity notation index	S08	Default value = 0
0x608C	ds402 velocity dimension index	U08	Default value = $0xA4$, i.e. rpm
0x608D	ds402 acceleration notation index	S08	Default value = 0
0x608E	ds402 acceleration dimension index	U08	Default value = $0xAF$, i.e. rev/sec ²
0x608F	ds402 position encoder resolution	Fraction	Inc. per Rev
0x608F/0	number of entries	U08	Fixed value =2
0x608F/1	increments	U32	Default value = 65536
0x608F/2	revolutions	U32	Default value = 1
0x6090	ds402 velocity encoder resolution	Fraction	Inc/sec per Rev/sec
0x6090/0	number of entries	U08	Fixed value $= 2$
0x6090/1	increments per second	U32	Read-Only with fixed value of 65536
0x6090/2	revs per second	U32	Read-Only with fixed value of 1
0x6091	ds402 gear ratio	Fraction	Motor revs per driving revs
0x6091/0	number of entries	U08	Fixed value $= 2$
0x6091/1	motor revs	U32	Default value = 1
0x6091/2	shaft revs	U32	Default value = 1
0x6092	ds402 feed constant	Fraction	Feed pos. per driving revs
0x6092/0	number of entries	U08	Fixed value $= 2$
0x6092/1	Feed	U32	Default value = 360, (pos dimension=degrees)
0x6092/2	shaft revs	U32	Default value = 1
0x607E	ds402 polarity	Unsigned8	Bits to invert demand/actual position/velocity.
0x2861/1	ds402 factor calculate	Unsigned8	Calculate scale factors from factor group input

Table 7.5 Table of input parameters for the factors group

When values are written to the parameters above, the output parameters of the group, (i.e. the factors themselves) are not calculated until the *ds402_factor_calculate* parameter is written (any value) or the *ds402_polarity* is written. This is necessary to prevent errors occurring when changing the factor group. These output factors are used to convert from the user specific units of position, velocity, or acceleration units, to internal units of increments, incs/sec (and incs/ T_{samp}), and incs/ sec^2 (and incs/ T_{samp}^2), as shown previously

Index	Name	Туре	Comment
0x6093	ds402 position factor	Fraction	Position units to increments
0x6093/0	number of entries	U08	Fixed value $= 2$
0x6093/1	numerator	U32	Default value = 1
0x6093/2	denominator	U32	Default value = 1
0x6094	ds402 velocity encoder factor	Fraction	Velocity units to incs./sec
0x6094/0	number of entries	U08	Fixed value $= 2$
0x6094/1	numerator	U32	Default value = 1
0x6094/2	denominator	U32	Default value = 1
0x6095	ds402 velocity factor 1	Fraction	Velocity units to RPM
0x6095/0	number of entries	U08	Fixed value $= 2$
0x6095/1	numerator	U32	Default value = 1
0x6095/2	denominator	U32	Default value = 1
0x6096	ds402 velocity factor 2	Fraction	Pos enc res. / vel. enc. res. (fixed at 1/1)
0x6096/0	number of entries	U08	Fixed value = 2
0x6096/1	numerator	U32	Default value = 1
0x6096/2	denominator	U32	Default value = 1
0x6097	ds402 acceleration factor	Fraction	Accel units to incs./ sec^2
0x6097/0	number of entries	U08	Fixed value $= 2$
0x6097/1	numerator	U32	Default value = 1
0x60972	Denominator	U32	Default value = 1
0x2861/0	ds402 factor error	U08	Most Recent Factors Error Code

Table 7.6 Table of output parameters for the factors group

The formulae used to generate the factors are different for linear and rotational cases. The following two sections list the formulae used, and show examples of their use for both rotational and linear cases.

ROTATIONAL EXAMPLE

Consider the case of a rotational example as shown below. Consider for example that the position encoder resolution (feedback) is 65536 increments/rev (e.g. using resolver), the gear ratio is 1:2, and that the position units are in .1 of a degree, velocity units are in rpm, and acceleration units are in rev/sec².

Figure 7.8: - Rotational Factor Example.

The following input values, will result in the output factors listed below: -

ds402 position notation index = -1	ds402 acceleration dimension index 0xAF (rev/sec ²)
ds402 position dimension index = $0x41$ (degrees)	ds402 position encoder resolution = $65536 / 1$
ds402 velocity notation index $= 0$	ds402 velocity encoder resolution = 65536 / 1 (Fixed)
ds402 velocity dimension index = $0xA4$ (rpm)	ds402 gear ratio = $1/2$
ds402 acceleration notation index = 0	ds402 feed constant = $360 / 1$

Position Factor =
$$\left(\frac{\text{position}_\text{encoder}_\text{resolution} \times \text{gear}_\text{ratio}}{\text{feed}_\text{const.}}\right) \times 10^{\text{PosNotIndex}}$$

= $\left(\frac{\frac{65536}{1} \times \frac{1}{2}}{\frac{360}{1}}\right) \times 10^{-1} = \frac{65536}{7200}$ incs per position unit

Velocity Encoder Factor =
$$\left(\frac{velocity_encoder_resolution \times gear_ratio}{vel_units (in rev/sec)}\right) \times 10^{VelNotIndex}$$

= $\left(\frac{\frac{65536}{1} \times \frac{1}{2}}{60}\right) \times 10^{\circ} = \frac{65536}{120}$ incs/sec per velocity unit

Acceleration Factor =
$$\left(\frac{velocity_encoder_resolution \times gear_ratio}{accel_units (in/sec^2)}\right) \times 10^{AccNotIndex}$$

= $\left(\frac{\frac{65536}{1} \times \frac{1}{2}}{\frac{1}{1}}\right) \times 10^{0} = \frac{65536}{2} incs/sec2 \ per \ acceleration \ unit$

Velocity Factor 1 = $\left(\frac{vel_units(in rev/sec)}{60 \times gear_ratio}\right) \times \frac{1}{10^{VelNotIndex}}$

$$= \left(\frac{60}{60 \times \frac{1}{2}}\right) \times \frac{1}{10^0} = \frac{2}{1} \text{ velocity unit per motor rpm}$$

Velocity Factor 2 =
$$\left(\frac{position_encoder_resolution}{velocity_encoder_resolution}\right) = \frac{65536}{65536}$$
 pos and vel. resolution same

These factors are used as shown in each of the subsequent sections to scale from the units specified by the user, to the correct internal value to be used internally in the drive. This allows the user to work in the preferred units, while the drive implements the correct scaling.

NOTE:- Due to the fixed point nature of the factors (i.e. U32 / U32), and the 2^{32} range of their resolution, position units of radians require a scaling of a floating point number (i.e. 2π). For example, if the Position Dimensions is in radians (i.e. 0x10), and the encoder resolution is 65536, then the Position Factor is $65536/2\pi$. This is implemented in fixed point, by setting the numerator to nearly it's full numerical range of 2^{32} , and setting the denominator accordingly. :-

Position Factor =
$$\left(\frac{65536}{1} \times \frac{65535}{(U32)65535 * 2\pi}\right) = \frac{4294901760}{411768} = 10430.39$$

This compares to a value of 10430.37, when floating point arithmetic is used.

LINEAR EXAMPLE

Consider the case of a linear example as shown below. Consider for example that the position encoder resolution (feedback) is 2^{20} i.e. 1048576 increments/rev (e.g. using encoder encinc = 2048, and encres = 9), the gear ratio is 1:1, and the feed constant is 50000 µm/rev. The velocity should be in µm/sec, and acceleration in µm/sec².

Figure 7.9 Linear Factor Example.

The following input values, will result in the output factors listed below: -

ds402 position notation index = -6	ds402 acceleration dimension index 0x55 (m/sec ²)
ds402 position dimension index = $0x01$ (metres)	ds402 position encoder resolution = $1048576 / 1$
ds402 velocity notation index $=$ -6	ds402 velocity encoder resolution = $65536 / 1$ (Fixed)
ds402 velocity dimension index = $0xA6$ (m/sec)	ds402 gear ratio = $1/1$
ds402 acceleration notation index = -6	ds402 feed constant = 50000 / 1

$$Position \ Factor = \left(\frac{position_encoder_resolution \times gear_ratio}{feed_const}\right)$$
$$= \left(\frac{1048576'_1 \times \frac{1}{1}}{50000'_1}\right) = \frac{1048576}{50000} \ incs \ per \ position \ unit$$
$$Velocity \ Encoder \ Factor = \left(\frac{vel_enc_res \times gear_ratio \times \left(\frac{Pos_units}{sec}\right)}{feed_const \times vel_units}\right) \times 10^{(VelNotIndex-PosNotIndex)}$$
$$= \left(\frac{65536'_1 \times \frac{1}{1}}{50000'_1}\right) \times 10^{(-6-(-6))} = \frac{65536}{50000} \ incs/sec \ per \ velocity \ unit$$
$$Acceleration \ Factor = \left(\frac{Vel \ Enc \ Factor \times vel_units}{accel_units \times sec}\right) \times 10^{(AccNotIndex-VelNotIndex)}$$
$$= \left(\frac{65536'_50000}{1}\right) \times 10^{(-6-(-6))} = \frac{65536}{50000} \ incs/sec2 \ per \ acceleration \ unit$$

$$Velocity \ Factor \ 1 = \left(\frac{feed_const \times vel_units}{60 \times gear_ratio \times \binom{pos_units}{sec}}\right) \times 10^{(PosNotIndex-VelNotIndex)}$$
$$= \left(\frac{50000}{1}{60}\right) \times 10^{(-6-(-6))} = \frac{50000}{60} \ velocity \ unit \ per \ motor \ rpm$$
$$Velocity \ Factor \ 2 = \left(\frac{position_encoder_resolution}{velocity_encoder_resolution}\right)$$
$$= \left(\frac{1048576}{65536}\right) = \frac{1048576}{65536} \ pos \ and \ vel. \ resolution \ same$$

NOTE:- It is recommended that the notations for position, velocity, and acceleration, be in a similar region. If the user were to select m/sec rather than um/sec for velocity, this would result in an additional factor of 1000000 in the velocity encoder, and acceleration factors. To avoid an overflow in the numerator the divisor is reduced, to compensate, with the numerator being set to nearly it's full numerical range of 2^{32} . This has the effect of causing a minor error in the velocity, and acceleration scaling (e.g. 0.02 % in this example). The larger the difference is in notation, the larger the error effect.

Velocity Encoder Factor =
$$\left(\frac{65536}{50000}\right) \times 10^{(0-(-6))} = \frac{65536 \times 1000000}{50000} = 1310720$$

= $\left(\frac{65536}{50000}\right) \times 10^{(0-(-6))} = \frac{65536 \times 65535}{50000 \times 65535/1000000} = \frac{4294901760}{3276} = 1311020$

NOTE:- The indices of notation and dimension selected for a particular unit, should be for the smallest unit of interest (e.g. if set units to 1mm, then cannot set any position parameter, that is in position units to smaller than 1mm.)

GENERAL ISSUES

1) The current draft of DS402 standard does not list all valid dimension types (e.g. no acceleration units defined). The following table lists the supported dimensions

Physical Dimension	Units	Dimension Index	Linear / Rotational
Angle/Length/Position	m.	0x01	Linear
	rad.	0x10	Rotational
	sec.	0x43	Rotational
	min	0x42	Rotational
	deg	0x41	Rotational
	revs	0xB4	Rotational
Velocity	m/sec	0xA6	Linear
	m/min	0xA7	Linear
	m/hr	0xA8	Linear
	rev/sec	0xA3	Rotational
	rev/min	0xA4	Rotational
	rev/hr	0xA5	Rotational
Acceleration	m/sec ²	0x55	Linear
	m/min ²	0xB1	Linear
	rev/sec ²	0xAF	Rotational
	rev/min ²	0xB0	Rotational

- 2) Velocity Encoder Resolution is read only, and set to a fixed value of 65536/1, since internally the velocity is always scaled to correspond to 65536 increments/rev. DS402 indicates that this parameter should be writeable.
- 3) Velocity Factor 1 is incorrect in DS402, since it lists vel units instead of position units in denominator. The velocity factor 1 is implemented as shown earlier.
- 4) Acceleration Factor is incorrect in DS402, since it does not include acceleration or velocity notation indices. The factor is implemented as shown earlier.
- 5) Sub-Index 2 of the Position Factor is incorrectly listed as Feed Constant, when it should read divisor.
- 6) A mix of rotational (e.g. rev/sec) and linear units (e.g. m) is not allowed. The position, velocity and acceleration units must all be either all rotational or all linear. An error is not returned when they are not the same, since this would prevent them from ever being changed.
- 7) If the dimensions are rotational, the feed is set to a fixed value (e.g. always 360 degrees per rev), and will return an error if attempt to set feed when dimension is rotational.
- 8) When any of the inputs to the factors change, the outputs, and their dependencies are all updated.
- 9) The output parameters are read only, being set implicitly from the input values, they cannot be explicitly set.
- 10) The standard does not explicitly state if rounding should occur, or return an error, when the inputs to the factor group, cause the output values to exceed the size of fixed point 32-bit numerator or denominator. Similarly, it doesn't specify what should happen if scaling a parameter by a factor, could result in an overflow. What is implemented in both cases is that an error is returned, and a parameter called *factor error* is set to indicate the reason for the most recent error. It is recommended that factors be set initially upon configuration, and not altered subsequently. The table below lists the factors error code values, with the first 4 indicating errors in setting up the output of the factors group, and the remainder indicating errors, setting up parameters which depend/use the factors.: -

Value	Error Code	Comment
1	POS_2_INC_ERROR	Error Setting up Position Factor.
2	VEL_2_INC_PER_SEC_ERROR	Error Setting up Velocity Encoder Factor.
3	RPM_2_VEL_ERROR	Error Setting up Velocity Factor 1.
4	ACC_2_INC_PER_SEC2_ERROR	Error Setting up Acceleration Factor.
5	HOMOFF_ERROR	Error Setting up the Home Offset Value
6	POSLIMMIN_ERROR	Error Setting up the Software Position Limit Minimum
7	POSLIMMAX_ERROR	Error Setting up the Software Position Limit Maximum
8	POSRNGMIN_ERROR	Error Setting up the Position Range Limit Minimum
9	POSRNGMAX_ERROR	Error Setting up the Position Range Limit Maximum
10	TARPOS_ERROR	Error Setting up the Target Position.
11	PROVEL_ERROR	Error Setting up the Profile Velocity.
12	PROACC_ERROR	Error Setting up the Profile Acceleration.
13	HOMSWT_ERROR	Error Setting up the Homing Switch Speed.
14	HOMZER_ERROR	Error Setting up the Homing Zero Speed.
15	HOMACC_ERROR	Error Setting up the Homing Acceleration.
16	TARVEL_ERROR	Error Setting up the Target Velocity.
17	VELWIN_ERROR	Error Setting up the Velocity Window.
18	VELTHR_ERROR	Error Setting up the Velocity Threshold.
19	POSWIN_ERROR	Error Setting up the Position Window.
20	FOLERR_ERROR	Error Setting up the Following Error.

Table 7.8 Table of factors error codes

- 11) The gear ratio is the number of motor shaft revolutions per driving shaft revolutions. The gear ratio is not included in the feed constant.
- 12) The velocity encoder factor converts from velocity units to incs/sec. This is incorrectly listed as incs in DS402
- 13) The acceleration factor converts from acceleration units into incs/sec2. This is incorrectly listed in DS402.
- 14) The polarity parameter is used for both position and velocity polarities. Setting the position polarity bit will multiply the position demand value and position actual value by -1. Setting the velocity polarity bit will multiply the velocity demand value and velocity actual value by -1. The MSB (Bit 7) sets the position polarity, while Bit 6 sets the velocity polarity.
- 15) The encoder resolution for the factors group is set dependent on the value of encoder parameters. The resolution is set from encinc << encres. If the factor encoder resolution is changed, encres (0x2e20/5) is set-up accordingly (encinc will not change.).

7.11.1 Factor Group Parameters

Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
NOTATION / DIMENSION												
ds402 position notation index	0x6089	0	yes	s08	r/w	0	-	-	none	С	А	4111
ds402 position dimension index	0x608A	0	yes	u08	r/w	deg	-	-	none	С	А	4112
ds402 velocity notation index	0x608B	0	yes	s08	r/w	0	-	-	none	С	Α	4113
ds402 velocity dimension index	0x608C	0	yes	u08	r/w	rpm	-	-	none	С	Α	4114
ds402 acceleration notation index	0x608D	0	yes	s08	r/w	0	-	-	none	С	А	4115
ds402 acceleration dimension index	0x608E	0	yes	u08	r/w	rev/sec ²	-	-	none	С	Α	4116
INPUT PARAMETERS												
ds402 position encoder resolution increments (see note 1)	0x608F	1	yes	u32	r/w	65536	-	-	inc	N	A	4118
ds402 position encoder resolution revs	0x608F	2	yes	u32	r/w	1	1	-	none	С	Α	4119
ds402 velocity encoder resolution increments/sec	0x6090	1	yes	u32	r	-	-	-	inc/sec	N	А	4121
ds402 velocity encoder resolution revs/sec	0x6090	2	yes	u32	r	1	1	-	rev/sec	N	Α	4122
ds402 gear ratio motor revs	0x6091	1	yes	u32	r/w	1	-	-	none	С	А	4124
ds402 gear ratio shaft revs	0x6091	2	yes	u32	r/w	1	1	-	none	С	А	4125
ds402 feed constant feed	0x6092	1	yes	u32	r/w	360	-	-	none	С	Α	4127
ds402 feed constant shaft revs	0x6092	2	yes	u32	r/w	1	1	-	none	С	Α	4128
ds402 polarity	0x607E	0	yes	u08	r/w	0	-	-	none	С	Α	4144
ds402 calculate_factors	0x2861	1	no	u08	r/w	0	-	-	none	Ν	Α	4238
OUTPUT PARAMETERS												
ds402 positon factor numerator	0x6093	1	yes	u32	r	1	-	-	none	Ν	А	4130
ds402 positon factor denominator	0x6093	2	yes	u32	r	1	1	-	none	Ν	А	4131
ds402 velocity encoder factor numerator	0x6094	1	yes	u32	r	1	-	-	none	N	A	4133

MOOG

SECTION 7: CANOPEN DRIVE PROFILE : DS402

DS2100 User's Manual

ds402 velocity encoder factor denominator	0x6094	2	yes	u32	r	1	1	-	none	N	А	4134
ds402 velocity factor1 numerator	0x6095	1	yes	u32	r	1	-	-	none	Ν	Α	4136
ds402 velocity factor1 denominator	0x6095	2	yes	u32	r	1	1	-	none	Ν	Α	4137
ds402 velocity factor2 numerator	0x6096	1	yes	u32	r	1	-	-	none	Ν	Α	4139
ds402 velocity factor2 denominator	0x6096	2	yes	u32	r	1	1	-	none	Ν	А	4140
ds402 acceleration factor numerator	0x6097	1	yes	u32	r	1	-	-	none	N	Α	4142
ds402 acceleration factor denominator	0x6097	2	yes	u32	r	1	1	-	none	N	A	4143
ds402 factor error	0x2861	0	no	u08	r	0	-	-	none	Ν	Α	4236

Note 1: ds402 position encoder resolution is derived from encoder increments and encoder resolution, and therefore need not be save to NVM. Setting the ds402 encoder resolution, will set the encoder resolution, but will not change the encoder increments value.

7.12 Direct Torque Mode (Manufacturer Specific)

A manufacturer specific mode for torque has been implemented, and uses parameters similar to those used in DS402's profile torque mode. The units for torque are also similar to those of profile torque mode, and are listed as per thousand for motor rated torque. The diagram below shows the parameters, and their use.

Figure 7.10 Direct Torque Mode implementation.

Index	Name	Туре	Comment
0x6071	ds402 target torque	S16	Set-Point for Torque, in units of per thousand of rated torque (Default = 0)
0x6072	ds402 max torque	U16	Max permissible Torque, in units of per thousand of rated torque (Default = 0)
0x6074	ds402 torque demand value	S16	Output of torque limiting function, in units of per thousand of rated torque (Default = 0)
0x6076	ds402 motor rated torque	U32	In units of mNm. (rotational), or mN. (linear) (Default = 1)
0x6077	ds402 torque actual value	S16	Instantaneous Torque in the drive motor, in units of per thousand of rated torque (Default = 0)

Table 7.9 Table of direct torque mode parameters

CONTROL WORD

1. The control word implements the halt bit, as per profile torque mode. Clearing the halt bit will enable/gate the target torque. Setting the halt bit will, in effect, set torque demand to zero.

15	9	8	7	6	4 3 0
(see 1	10.3.1)	Halt	(see 10.3.1)	reserved	(see 10.3.1)
MSB					LSB

Name	Value	Description
Halt	0	Execute motion
	1	Stop axle

Figure 7.11 Direct Torque Mode Control Word.

STATUS WORD

1. None of the operation mode specific bits in the status word are set or cleared when in Direct Torque Mode.

GENERAL ISSUES

- 1. Motor Rated Torque is not derived from a Motor Current Limit, and so must be set explicitly by the user. It has a default value of 1. Motor Rated Torque = Rated Current * sqrt(3)/2 * motke *1000 mNm.
- 2. Max Torque is a programmable limit, internal to the torque control loops, and will apply regardless of the mode of operation, since torque/current is the innermost loop.
- 3. Other limits such as thermal limiting, I²T limiting, controller current limit, motor current limit, may also limit the Torque Demand Values.
- 4. In addition, because of the velocity limiting implemented in torque mode, the torque demand may be reduced, or set to zero, to maintain the drives speed at the velocity limit.
- 5. In addition two parameter sets relating to torque are defined (Torque Control, and Power stage parameter records).0 These parameters are a grouping of drive parameters into a single DS402 record. The two records are in the table on the following page. For detailed information on the meaning of the parameters, see the relevant sections.

SAMPLE SETUP

The following section gives an example of a typical setup for a direct torque move.

Index/Sub Index	Name	Value	Comment
0x6040	ds402 control word	0x06	Shutdown command
0x6060	ds402 modes of operation	-1	Set mode to Profile Position Mode
0x6076	dtm motor rated torque	3724	Based on motke=0.43, Rated Current = 10A.
0x6072	dtm max torque	20	Max torque = $20/1000$ of rated torque = 74.48 mNm
0x6071	dtm target torque	10	Set Target Torque = $10/1000$ of rated torque.
0x6040	ds402 control word	0x0F	Enable Drive command
0x6077	dtm torque actual		Read Actual Toque as approx. 10 during move
0x6041	ds402 status word		Read as 0x0237 during move
0x6040	ds402 control word	0x10F	Halt command
0x6041	ds402 status word		Read as 0x0237 when halted.

Table 7.10 Sample set-up for direct torque mode

7.12.1 Direct Torque Mode Parameters

Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
INPUT PARAMETERS												
ds402 motor rated torque	0x6076	0	yes	u32	r/w	1	1	4294967295	0.001Nm	С	Α	4226
ds402 target torque	0x6071	0	yes	s16	r/w	0	-	-	Per 1000	Ν	А	4223
									rated torque			
ds402 max torque (See note	0x6072	0	yes	u16	r/w	0	-	-	Per 1000	Ν	А	4224
<u>1)</u>									rated torque			
FEEDBACK VALUES												
ds402 torque demand value	0x6074	0	yes	s16	r	0	-	-	Per 1000	Ν	А	4225
									rated torque			
ds402 torque actual value	0x6077	0	yes	s16	r	0	-	-	Per 1000	Ν	А	4227
									rated torque			
TORQUE CONTROL PARAM. SET												
current loop d-axis i-gain	0x60F6	1	no	f32	r/w	6.35404981	0.0	-	V/A/Tsamp	E	А	1272
current loop d-axis p-gain	0x60F6	2	no	f32	r/w	32.02666839	0.0	-	V/A	Е	А	1274
current loop q-axis i-gain	0x60F6	3	no	f32	r/w	6.35404981	0.0	-	V/A/Tsamp	Е	А	1277
current loop q-axis p-gain	0x60F6	4	no	f32	r/w	32.02666839	0.0	-	V/A	Е	А	1279
current loop foldback minimum	0x60F6	5	no	f32	r/w	0.4	0.1	1.0	None	С	А	1284
current loop foldback breakpoint	0x60F6	6	no	f32	r/w	140.0	5.0	2000.0	Amp	С	А	1285
current loop d-axis error	0x60F6	7	yes	f32	r	-	-	-	А	Ν	А	1286
current loop q-axis error	0x60F6	8	yes	f32	r	-	-	-	А	Ν	Α	1287
current loop alpha observer i-gain	0x60F6	9	no	f32	r/w	0.01394492	0.0	-	V/A/Tsamp	Е	Α	1288
current loop alpha observer p-gain	0x60F6	10	no	f32	r/w	0.19933257	0.0	-	V/A	E	Α	1290
current loop beta observer i-gain	0x60F6	11	no	f32	r/w	0.01394492	0.0	-	V/A/Tsamp	E	Α	1293
current loop beta observer p-gain	0x60F6	12	no	f32	r/w	0.19933257	0.0	-	V/A	Е	A	1295
current loop alpha observer error	0x60F6	13	yes	f32	r	-	-	-	Α	Ν	A	1298
current loop beta observer error	0x60F6	14	yes	f32	r	-	-	-	Α	Ν	A	1299
POWER STAGE PARAMETER SET												

SECTION 7: CANOPEN DRIVE PROFILE : DS402

DS2100 User's Manual

switching frequency	0x60F7	1	no	u32	r	-	-	-	Hz	Ν	А	1194
current controller max	0x60F7	2	no	f32	r/w	22.0	0.1	1000.0	А	F	А	1092
current max	0x60F7	3	no	f32	r	-	-	-	А	Ν	А	1093
current d-axis observer	0x60F7	4	yes	f32	r	-	-	-	А	Ν	Α	1096
current q-axis observer	0x60F7	5	yes	f32	r	-	-	-	А	Ν	Α	1097
current d-axis demand	0x60F7	6	yes	f32	r	-	-	-	А	Ν	Α	1098
current q-axis demand	0x60F7	7	yes	f32	r	-	-	-	А	Ν	Α	1099
current nominal sensed	0x60F7	8	no	f32	r/w	25.08	0.1	1000.0	А	F	Α	1116
current actual	0x60F7	9	yes	f32	r	-	-	-	А	Ν	Α	1119
current demand velocity comp output	0x60F7	10	yes	f32	r	-	-	-	А	Ν	Α	1120
current demand vel loop filter output	0x60F7	11	yes	f32	r	-	-	-	А	Ν	Α	1121
current demand pre thermal limiting	0x60F7	12	yes	f32	r	-	-	-	А	Ν	Α	1122
controller continuous rms current	0x60F7	13	no	f32	r/w	6.0	0.1	1000.0	А	С	Α	1126
I2T Window size	0x60F7	14	no	u32	r/w	25000	-	-	mSec	С	Α	4239
I2T Smoothing Factor.	0x60F7	15	no	u08	r/w	4	1	49	none	С	Α	4240
I2T current limit	0x60F7	16	no	f32	r	-	-	-	А	Ν	Α	4241
bus voltage nominal	0x60F7	17	no	f32	r/w	-	-	-	V	Ν	Α	1229
bus voltage actual	0x60F7	18	yes	f32	r	0	-	-	V	Ν	Α	1232
GENERAL PARAMETERS												
ds402 control word	0x6040	0	yes	u16	r/w	0	-	-	none	Ν	А	1650
ds402 status word	0x6041	0	yes	u16	r	0	-	-	none	Ν	Α	1651
ds402 modes of operation	0x6060	0	yes	s08	r/w	0	-	-	none	Ν	Α	1652
ds402 modes of operation display	0x6061	0	yes	s08	r	0	-	-	none	Ν	Α	1653
ds402 error code	0x603F	0	yes	u16	r	-	-	-	none	Ν	A	4234

Note 1: ds402 max torque is derived from (and can set) torque max limit and therefore need not be saved to NVM.

7.13 Direct Velocity Mode (Manufacturer Specific)

A manufacturer specific mode for velocity has been implemented, and uses parameters similar to the profile velocity mode, with the exception that the target velocity is not profiled or shaped, but rather a set-point value is used as the demand. The Velocity Control Function is required for this mode, and is outlined in section Velocity Control Function

Figure 7.12 Direct Velocity Mode implementation.

Index	Name	Туре	Comment
0x6080	ds402 max motor speed	U32	Maximum allowable speed of motor, in rpm.
0x60FF	ds402 target velocity	S32	Input / Set point for velocity, in velocity units.
0x6510/32	ds402 max_load_speed	U32	Maximum allowable speed of load in velocity
			units

Table 7.11 Table of direct velocity mode parameters

CONTROL WORD

1. The control word implements the halt bit, as per profile velocity mode. Clearing the halt bit will enable/gate the target velocity. Setting the halt bit will, in effect, set velocity demand to zero.

Name	Value	Description
Halt	0	Execute motion
	1	Stop axle

Figure 7.13 Direct Velocity Mode Control Word.

STATUS WORD

- 1. A target reached bit is implemented; indicating that the target velocity has been reached, within the velocity window (See Section 7.19 Velocity Control Function). If the Halt bit is set, it will indicate if the drive has stopped or not.
- 2. A "Speed=0" bit is implemented; indicating that the speed is at zero (less than the velocity threshold), see Section 7.19 Velocity Control Function.

Name	Value	Description
Target reached	0	Halt = 0: <i>Target velocity</i> not (yet) reached Halt = 1: Axle decelerates
	1	Halt = 0: <i>Target velocity</i> reached Halt = 1: Axle has velocity 0
Speed	0	Speed is not equal 0
	1	Speed is equal 0

Figure 7.14 Direct Velocity Mode Status Word.

GENERAL ISSUES

- 1. The ds402 Max Load Speed is derived from *velocity_maximum*, and so setting either value will setup the other automatically.
- 2. Setting ds402 Max Load Speed, or *velocity_maximum* should be done initially at configuration, and not changed during moves, as it changes the internal scaling of the drive.
- 3. In the case of the drive being halted; to determine if axle has velocity 0, it is compared against a standby velocity in rads./sec. If the value is less than this value then it is considered stopped.
- 4. The acceleration limit is set by the acceleration limit of the drive.

SAMPLE SETUP

The following section gives an example of a typical setup for a direct velocity move.

Index/Sub Index	Name	Value	Comment
0x6040	ds402 control word	0x06	Shutdown command
0x6060	ds402 mode of operation	-2	Set mode to Direct Velocity Mode
0x6510/32	ds402 max load speed	6000	Set Max load speed = 6000 rpm
0x606D	ds402 velocity window	40	Set velocity window = 40 rpm
0x606F	ds402 velocity threshold	20	Set velocity threshold = 20 rpm
0x60FF	ds402 target velocity	1000	Set target velocity = 1000 rpm
0x6040	ds402 control word	0x0F	Enable Drive command
0x606C	ds402 velocity actual		Read as 1000 during move
0x6041	ds402 status word		Read as 0x637 during move
0x6040	ds402 control word	0x10F	Halt command
0x6041	ds402 status word		Read as 0x1637 when halted.

Table 7.12 Sample set-up for direct velocity mode

7.13.1 Direct Velocity Mode Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
Ι	NPUT PARAMETERS												
	ds402 max motor speed (Note 1)	0x6080	0	yes	u32	r/w	0	-	-	rpm	N	A	4161
	ds402 target velocity	0x60FF	0	yes	s32	r/w	0	-	-	vel units	Ν	Α	4228
	ds402 max load speed (Note 2)	0x6510	32	yes	u32	r/w	0	-	-	vel units	N	A	4178
F	FEEDBACK VALUES												
	<u>ds402 velocity sensor</u> actual value	0x6069	0	yes	s32	r	0	-	-	incs/sec	N	А	4233
	ds402 velocity demand value	0x606B	0	yes	s32	r	0	-	-	vel. units	N	А	4231
	ds402 velocity actual value	0x606C	0	yes	s32	r	0	-	-	vel. units	N	А	4232
(GENERAL PARAMETERS												
	ds402 control word	0x6040	0	yes	u16	r/w	0	-	-	none	Ν	А	1650
	ds402 status word	0x6041	0	yes	u16	r	0	-	-	none	Ν	А	1651
	ds402 modes of operation	0x6060	0	yes	s08	r/w	0	-	-	none	Ν	Α	1652
	ds402 modes of operation display	0x6061	0	yes	s08	r	0	-	-	none	Ν	A	1653
	ds402 error code	0x603F	0	yes	u16	r	-	-	-	none	Ν	Α	4234

Note 1: ds402 max motor speed is derived from (and can set) motor max velocity and therefore need not be saved to NVM.

Note 2: ds402 max load speed is derived from (and can set) velocity_maximum and therefore need not be saved to NVM.

7.14 Profile Velocity Mode

In this mode, a target velocity is input to a profile generator. It generates a velocity demand profile for the velocity control loops, with further inputs to the profile generator rate limiting its output (e.g. max acceleration, etc...). The parameters below are used in this mode along with the parameters of the velocity control function as outlined in Section 7.19 Velocity Control Function.

Figure 7.15 Profile Velocity Mode implementation.

Index	Name	Туре	Comment
0x607F	ds402 max profile velocity	U32	Maximum speed allowed during a profile move, in velocity units.
0x6080	ds402 max motor speed	U32	Maximum allowable speed of motor, in rpm.
0x6510/32	ds402 max_load_speed	U32	Maximum allowable speed of load in velocity units
0x6083	ds402 profile acceleration	U32	Used to define acceleration of moves, in acceleration units.
0x6086	ds402 motion profile type	S16	Used to select the type of motion profile to perform. Only linear ramp (trapezoidal profile) is implemented.
0x60C5	ds402 max acceleration	U32	The max acceleration can be used to limit the profile acceleration. It is defined in acceleration units.
0x60FF	ds402 target velocity	S32	Input / Set point for velocity, in velocity units.

Table 7.13 Table of profile velocity mode parameters

CONTROL WORD

1. The control word implements the halt bit. Clearing the halt bit will enable/gate the target velocity. Setting the halt bit will, in effect, set velocity demand to zero. The drive will accelerate/decelerate at the profile acceleration. The location of the halt bit is the same as that shown previously for direct velocity mode.

STATUS WORD

- 1. A target reached bit is implemented, indicating that the target velocity has been reached, within the velocity window. If the Halt bit is set, it will indicate if the drive has stopped or not.
- 2. A "Speed=0" bit is implemented; indicating that the speed is at zero (i.e. less than the velocity threshold), see Section 7.19 Velocity Control Function
- 3. The location of the bits is the same as that shown previously for direct velocity mode.

GENERAL ISSUES

- 1. An internal limit in the drive may further limit the acceleration further. This *acceleration limit* parameter in rads./sec has a default value of 1000000 rads./sec. This limit is also used for quick stopping the drive.
- 2. If drive is enabled and moving and switch mode to profile velocity (e.g. from direct velocity mode), and if profile/maximum acceleration is set at zero, then the drive will not respond to changes in the target value, since the drive is not allowed to accelerate or decelerate.
- 3. Setting ds402 Max Load Speed, or *velocity_maximum* should be done initially at configuration, and not changed during moves, as it changes the internal scaling of the drive
- 4. The default and only value which Motion Profile Type can have is 0, (i.e. Linear ramp/ trapezoidal profile.)
- 5. The Max Slippage Error is not implemented, nor is the max slippage parameter, as their functionality is not clearly defined in the DS402 standard.

SAMPLE SETUP

The following section gives an example of a typical setup for a profile velocity move.

Index/Sub Index	Name	Value	Comment
0x6040	ds402 control word	0x06	Shutdown command
0x6060	ds402 modes of operation	3	Set mode to Profile Velocity Mode
0x60C5	ds402 max acceleration	200	Set maximum acceleration=200 rev/sec ²
0x6083	ds402 profile acceleration	100	Set profile acceleration=100 rev/sec ²
0x6510/32	ds402 max load speed	6000	Set Max load speed = 6000 rpm
0x607F	ds402 max pro velocity	6000	Set Max profile speed = 6000 rpm
0x606D	ds402 velocity window	40	Set velocity window = 40 rpm
0x606F	ds402 velocity threshold	20	Set velocity threshold = 20 rpm
0x60FF	ds402 target velocity	1000	Set target velocity = 1000 rpm
0x6040	ds402 control word	0x0F	Enable Drive command
0x606C	ds402 velocity actual		Read as 1000 during move
0x6041	ds402 status word		Read as 0x637 during move
0x6040	ds402 control word	0x10F	Halt command
0x6041	ds402 status word		Read as 0x1637 when halted.

Table 7.14 Sample set-up for profile velocity mode

7.14.1 Profile Velocity Mode Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
Γ	NPUT PARAMETERS												
	ds402 max profile velocity	0x607F	0	yes	u32	r/w	0	-	-	vel. units	С	A	4160
	ds402 max motor speed (Note 1)	0x6080	0	yes	u32	r/w	0	-	-	rpm	N	A	4161
	ds402 max load speed (Note 2)	0x6510	32	yes	u32	r/w	0	-	-	vel units	N	A	4178
	ds402 profile acceleration	0x6083	0	yes	u32	r/w	0	-	-	acc. units	С	A	4164
	ds402 motion profile type (Note 3)	0x6086	0	yes	s16	r/w	0	-	-	none	N	A	4166
	ds402 max acceleration	0x60C5	0	yes	u32	r/w	0	-	-	acc. units	С	Α	4163
	ds402 target velocity	0x60FF	0	yes	s32	r/w	0	-	-	vel. units	N	A	4228
	ds402 velocity window	0x606D	0	yes	u16	r/w	0	-	-	vel. units	С	А	4229
	ds402 velocity threshold	0x606F	0	yes	u16	r/w	0	-	-	vel. units	С	Α	4230
F	EEDBACK VALUES												
	<u>ds402 velocity sensor</u> actual value	0x6069	0	yes	s32	r	0	-	-	incs/sec	N	A	4233
	ds402 velocity demand value	0x606B	0	yes	s32	r	0	-	-	vel. units	N	A	4231
	ds402 velocity actual value	0x606C	0	yes	s32	r	0	-	-	vel. units	N	А	4232
0	GENERAL PARAMETERS												
	ds402 control word	0x6040	0	yes	u16	r/w	0	-	-	none	Ν	А	1650
1	ds402 status word	0x6041	0	yes	u16	r	0	-	-	none	Ν	Α	1651
	ds402 modes of operation	0x6060	0	yes	s08	r/w	0	-	-	none	N	A	1652

SECTION 7: CANOPEN DRIVE PROFILE: DS402

ds402 modes of operation display	0x6061	0	yes	s08	r	0	-	-	none	Ν	Α	1653
ds402 error code	0x603F	0	yes	u16	r	-	-	-	none	Ν	Α	4234

Note 1: ds402 max motor speed is derived from (and can set) motor max velocity and therefore need not be saved to NVM.

Note 2: ds402 max load speed is derived from (and can set) velocity_maximum and therefore need not be saved to NVM.

Note 3: ds402 motion profile type can only have a value of 0 (i.e. linear /trapezoidal profile)

7.15 Direct Position Mode (Manufacturer Specific)

In this mode, a target position is set and limited to create a position demand. No profile generator is used. There are two different modes of operation for direct position mode. If mode of operation is set to -3, then a trigger for the move must be set by a 0 to 1 transition in the new set-point bit of the control word (similar to profile position mode). If the mode of operation is set to -4, then no trigger is required, and simply changing the set point will cause the new set point to be assumed. In both modes the "change immediately" bit can be set or cleared to interrupt or follow the current move.

Figure 7.16 Block Diagram of Direct Position Mode

Index	Name	Туре	Comment
0x607A	ds402 target position	U32	Input position for absolute move, in position units.
0x607B	ds402 software range limit	Array	Range limiting on demand, in position units.
0x607B/0	number of entries	U08	Fixed value = 2
0x607B/1	min	S32	Default value = -2^{31}
0x607B/2	max	S32	Default value = 2^{31} -1
0x607D	ds402 software position limit	Array	Limit on demand in position units, relative to home position.
0x607D/0	number of entries	U08	Fixed value = 2
0x607D/1	min	S32	Default value = -2^{31}
0x607D/2	max	S32	Default value = 2^{31} -1

CONTROL WORD

1. The control word is implemented as specified in the DS402 standard, with the following mode specific bits.

15	9	8	7	6	5	4	3	0
(see 10	0.3.1)		(see 10.3.1)		Change set immediately	New set-point	(see 10	0.3.1)
MSB			3 % - 3 %		139 03		10	LSB

MSB

Name	Value	Description			
New	New 0 Does not assume target position				
set-point	0 -> 1	Assume target position			
Change set 0 Finish the actua		Finish the actual positioning and then start the next positioning			
immediately	1	Interrupt the actual positioning and start the next positioning			

Figure 7.17 Direct Position Mode Control Word

- 2. If mode of operation = -3 (i.e. triggered), then the "new set point" bit must see a 0 to 1 transition in order for a move to occur. If the mode of operation = -4 (i.e. non-triggered), then the "new set point" bit is ignored, and a move is triggered by changing the target position.
- 3. Setting the "Change Set Immediately bit", will interrupt the actual positioning, and start the next positioning. Clearing the bit will finish the actual positioning, before starting the next positioning.

STATUS WORD

1. The status word is implemented as specified in the DS402 standard, with the following mode specific bits. 15 14 13 12 11 10 9 0

		 					-
(see 1	0.3.2)	Set-point acknowledge	(see 10.3.2)	Target reached		(see 10.3.2)	
MSB	28	34	12		0.40	LSI	3

Name	Value	Description
Target	0 Halt = 0: Target position not reached	
reached		Halt = 1: Axle decelerates
	1	Halt = 0: Target position reached
		Halt = 1: Velocity of axle is 0
Set-point	0	Trajectory generator has not assumed the positioning values (yet)
acknowledge	1	Trajectory generator has assumed the positioning values

Figure 7.18 Direct Poition Mode Status Word

- 2. The "target reached bit" indicates that the target position has been reached (within position window). See Section 7.20 Position Control Function.
- 3. The "Set point acknowledge bit" indicates if the Drive has assumed the positioning values or not. This value should be read when the new-set-point is cleared, to indicate if a subsequent move is queued or not.

GENERAL ISSUES

- 1. This mode supports only absolute moves. It does not support relative moves.
- 2. The halt bit is not used in this mode, rather the generic quickstop bit should be used.
- 3. The "following error bit" is not used in this mode since there is no intermediate demand value which changes over time, as there is in the case of a profile position move.
- 4. The speed at which the move is performed is limited by motor max velocity.
- 5. The purpose of the set-point acknowledge bit is to allow for sequencing of moves, when used in conjunction with the immediate bit. If the change immediate bit is set, then no sequencing of moves occurs, instead the current move is interrupted, and the new move is applied immediately, as shown below.

Data —	
New Set-Point	3
Change Immediate	
	Figure 7.19 Non-Sequenced Move

- 1. The user downloads target position for move (velocities etc in case of profile position mode).
- 2. The user sets the immediate bit in the control word to cause the move to occur immediately.
- 3. The user sets the new set-point bit from 0 to 1, to cause move to occur.

If the immediate bit is cleared, is allows for a request-response mechanism between host and drive, to indicate when more data can be written.

Data ——		<u>6</u>		
New Set-Point	3	4 6	7	
Change Immediate	2			
Set Point Acknowledge		5	8	
Actual Velocity		First Move	$\overline{}$	Second Move

Figure 7.20 Sequenced Move

- 1. The user downloads a target position for a move (velocities etc in case of profile position mode).
- 2. The user clears the immediate bit in the control word to allow for sequencing of moves.
- 3. The user sets the new set-point bit from 0 to 1, to cause move to occur.
- 4. The user then clears the new-set point bit in the control word.
- 5. The user checks the set-point acknowledge is low, before writing new target parameters for a new move.
- 6. The user sets a new set-point, and sets the set-point bit from 0 to 1, to queue the move.
- 7. The user then clears the new-set point bit in the control word.
- 8. The Drive will clear the set-point acknowledge when the drive is ready to accept new data, i.e. when first move of sequence is complete, since in effect set of set-points is only 2 deep.

SAMPLE SETUP

The following section gives an example of a typical setup for a direct position move. It performs a move to 36000 degrees.

Index/Sub Index	Name	Value	Comment
0x6040	ds402 control word	0x06	Shutdown command
0x6060	ds402 mode of operation	-3	Set mode to Direct Position Mode
0x607A	ds402 target position	36000	Target Position, pos dim=degrees
0x6067	ds402 position window	2	Set position window = 2 degrees
0x6065	ds402 following error window	10	Set following error window = 10 degrees
0x6040	ds402 control word	0x0F	Enable Drive
0x6040	ds402 control word	0x3F	Set New-Set point, with immediate bit set.
0x6040	ds402 control word	0x0F	Clear New-Set point,
0x6064	ds402 position actual		Actual Position, Read at end of move $= 36000$
0x6063	ds402 position actual inc		Actual Position in incs = 65536000
0x6041	Ds402 status word		Read at end of move = $0x0637$ (i.e. target reached bit is set.)

Table 7.15	Sample set_un	for direct	nosition	mode
1 able 7.15	Sample set-up	tor unect	position	mode

7.15.1 Direct Position Mode Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
Γ	NPUT PARAMETERS												
	ds402 target position	0x607A	0	yes	s32	r/w	0	-	-	pos units	Ν	А	4146
	ds402 position range min	0x607B	1	yes	s32	r/w	-2147483648	-	-	pos units	С	А	1644
	ds402 position range max	0x607B	2	yes	s32	r/w	2147483647	-	-	pos units	С	А	1645
	ds402 software position limit min	0x607D	1	yes	s32	r/w	-2147483648	-	-	pos units	С	A	4149
	ds402 software position limit max	0x607D	2	yes	s32	r/w	2147483647	-	-	pos units	С	A	4150
ļ	ds402 home offset	0x607C	0	yes	s32	r/w	0	-	-	pos units	С	А	4147
	ds402 following error window (Note 1)	0x6065	0	yes	u32	r/w	0	-	-	pos units	N	A	4171
	ds402 position window	0x6067	0	yes	u32	r/w	0	-	-	pos units	С	Α	4172
F	FEEDBACK VALUES												
	ds402 position demand value	0x6062	0	yes	s32	r	0	-	-	pos units	Ν	А	4167
	ds402 position demand value increments	0x60FC	0	yes	s32	r	0	-	-	incs	N	A	4168
	ds402 position actual value	0x6064	0	yes	s32	r	0	-	-	pos units	Ν	А	4169
	ds402 position actual value increments	0x6063	0	yes	s32	r	0	-	-	incs	N	A	4170
C	GENERAL PARAMETERS												
	ds402 control word	0x6040	0	yes	u16	r/w	0	-	-	none	Ν	А	1650
1	ds402 status word	0x6041	0	yes	u16	r	0	-	-	none	Ν	А	1651
	ds402 modes of operation	0x6060	0	yes	s08	r/w	0	-	-	none	Ν	Α	1652
	ds402 modes of operation display	0x6061	0	yes	s08	r	0	-	-	none	Ν	Α	1653
	ds402 error code	0x603F	0	yes	u16	r	-	-	-	none	Ν	А	4234

Note 1: ds402 following error is derived from (and can set) position error limit and therefore need not be saved to NVM.

7.16 Profile Position Mode

In this mode, a target position is input to a profile generator. It generates a position demand profile for the position control loops, with further inputs to the profile generator shaping its output (e.g. velocity, acceleration limits...)

Index	Name	Туре	Comment
0x607A	ds402 target position	S32	Input to profile generator in position units.
0x607B	ds402 software range limit	Array	Range limiting on demand, in position units.
0x607B/0	number of entries	U08	Fixed value = 2
0x607B/1	min	S32	Default value = -2^{31}
0x607B/2	max	S32	Default value = 2^{31} -1
0x607D	ds402 software position limit	Array	Limit on demand in position units, relative to home position.
0x607D/0	number of entries	U08	Fixed value = 2
0x607D/1	min	S32	Default value = -2^{31}
0x607D/2	max	S32	Default value = 2^{31} -1
0x607F	ds402 max profile velocity	U32	Max. speed allowed during a profile move, in velocity units.
0x6080	ds402 max motor speed	U32	Maximum allowable speed of motor, in rpm.
0x6510/32	ds402 max_load_speed	U32	Maximum allowable speed of load in velocity units
0x6081	ds402 profile velocity	U32	Normally attained at end of accel. ramp, in velocity units.
0x6083	ds402 profile acceleration	U32	Used to define acceleration of moves, in acceleration units.
0x6086	ds402 motion profile type	S16	Only linear ramp (trapezoidal profile) is implemented.
0x60C5	ds402 max acceleration	U32	Used to limit the profile acceleration, in acceleration units.

Table 7.16 Table of profile position mode parameters

CONTROL WORD

1. The control word is implemented as specified in the DS402 standard, with the following mode specific bits.

15	9	8	7	6	5	4	3	0
(see 1	0.3.1)	Halt	(see 10.3.1)	abs / rel	Change set immediately	New set-point	(see 10.3.	1)
MSB							1.5	SB

Name	Value	Description
New	0	Does not assume target position
set-point	0 -> 1	Assume target position
Change set	0	Finish the actual positioning and then start the next positioning
immediately	1	Interrupt the actual positioning and start the next positioning
abs / rel	0	Target position is an absolute value
	1	Target position is a relative value
Halt	0	Execute positioning
	1	Stop axle with profile deceleration (if not supported with profile acceleration)

Figure 7.22 Profile Position Mode Control W	/ord
---	------

- 2. The "new set point" bit must see a 0 to 1 transition in order for a move to occur.
- 3. In the control word, if the "Change immediately" bit is set, and the drive is in the middle of a move, since the Profile Generator does not support changing acceleration on the fly, the acceleration cannot be changed.
- 4. If during a relative move, you set the control word with the "Change immediately" bit set, this extends the existing move by the target position value.

STATUS WORD

1. The status word is implemented as specified in the DS402 standard, with the following mode specific bits.

15	14	13	12	11	10	9		0
(see 1	0.3.2)	Following error	Set-point acknowledge	(see 10.3.2)	Target reached		(see 10.3.2)	
MOR								ICR

MSB

Name	Value	Description					
Target	0	Halt = 0: Target position not reached					
reached		= 1: Axle decelerates					
	1	Halt = 0: Target position reached					
		Halt = 1: Velocity of axle is 0					
Set-point	0	Trajectory generator has not assumed the positioning values (yet)					
acknowledge	1	Trajectory generator has assumed the positioning values					
Following	0	No following error					
error	1	Following error					

Figure 7.23 Profile Position Mode Status Word

- 2. The "target reached bit" indicates that the target position has been reached (within position window). If the Halt bit is set, it will indicate if the drive has stopped or not. See Section 7.20 Position Control Function
- 3. The "Set point acknowledge bit" indicates if the Profile Generator has assumed the positioning values or not. This operates the same as outlined earlier for direct position mode.
- 4. The "following error bit" indicates if a following error exists. (Delta between demand and actual position is greater than following error window). See Section 7.20 Position Control Function

5. The target reached bit is set for both relative and absolute moves, when the final position is reached.

GENERAL ISSUES

- 1. The New-Set Point has been implemented as a 0->1 transition (similar to homing mode), and as shown in Figure 17 of DS402. Whereas table 9 of DS402 indicates it as levels
- 2. DS402 has Set-Point Acknowledge values set incorrectly. What has been implemented is that value 0 indicates the profile generator has assumed the value, and value 1 indicates they have not been assumed.
- 3. In the control word, if the "Change immediately bit" is set, and the drive is in the middle of a move, and the new target position is such as to cause a reversal in direction of the drive, then the profile generator will quick-stop the drive.
- 4. An internal limit in the drive may further limit the acceleration further. This acceleration limit parameter in rads./sec has a default value of 1000 rads./sec. This limit is also used for quick stopping the drive.
- 5. If the drive is disabled via the serial text interface, the Profile generator still generates the profile, which can result in high speeds, when drive is enabled, due to large position errors.
- 6. If the drive is enabled, and outside a position limit, when a new position limit is set, the drive will move to this new limit, regardless of the "new-set point" bit in the control word.
- 7. The following error window, and position window are not implemented with a timer function, (i.e. duration for which limit must be exceeded). Instead a direct test of the absolute position versus the window value is used.
- 8. In the case of a relative move, the software limits, limit the size of the relative move.
- 9. Setting the immediate bit, and changing only the target velocity can increase the velocity during a move.

SAMPLE SETUP

The following section gives an example of a typical setup for a profile position move. It performs an absolute move of 36000 degrees, at a speed of 2000 rpm.

Index/Sub Index	Name	Value	Comment
0x6040	ds402 control word	0x06	Shutdown command
0x6060	ds402 mode of operation	1	Set mode to Profile Position Mode
0x607A	ds402 target position	36000	Target Position, pos dim=degrees
0x6510/32	ds402 max load speed	6000	Set Max load speed = 6000 rpm
0x607F	ds402 max profile velocity	6000	Set max. profile speed = 6000 rpm
0x6081	ds402 profile velocity	2000	Set profile speed = 2000 rpm
0x6083	ds402 profile acceleration	50	Set profile acceleration = 50 rec/sec^2
0x60C5	ds402 max acceleration	50	Set max. acceleration = 50 rec/sec^2
0x6067	ds402 position window	2	Set position window = 2 degrees
0x6065	ds402 following error window	10	Set following error window = 10 degrees
0x6040	ds402 control word	0x3F	Enable Drive, Set New-Setpoint, Set change immed bit, and absolute move
0x606C	ds402 velocity actual		Actual Velocity, Read during move = 2000
0x6064	ds402 position actual		Actual Position, Read at end of move = 36000
0x6063	ds402 position actual inc		Actual Position in incs = 65536000
0x6041	ds402 status word		Read at end of move = $0x1637$

 Table 7.17
 Sample set-up for profile position mode

DS2100 User's Manual

7.16.1 Profile Position Mode Parameters

Parameter Name		CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
INPUT PARAMETERS													
ds402 target po	osition	0x607A	0	yes	s32	r/w	0	-	-	pos units	Ν	А	4146
ds402 position	range min	0x607B	1	yes	s32	r/w	-2147483648	-	-	pos units	С	А	1644
ds402 position	range max	0x607B	2	yes	s32	r/w	2147483647	-	-	pos units	С	Α	1645
ds402 software	position	0x607D	1	yes	s32	r/w	-2147483648	-	-	pos units	С	А	4149
<u>limit min</u>													
ds402 software	position	0x607D	2	yes	s32	r/w	2147483647	-	-	pos units	С	А	4150
<u>limit max</u>													
ds402 home offs	set	0x607C	0	yes	s32	r/w	0	-	-	pos units	С	A	4147
ds402 max prof	ile velocity	0x607F	0	yes	u32	r/w	0	-	-	vel units	С	A	4160
ds402 max moto	r speed (Note	0x6080	0	yes	u32	r/w	0	-	-	rpm	Ν	А	4161
1)													
ds402 max load	speed (Note	0x6510	32	yes	u32	r/w	0	-	-	vel units	Ν	Α	4178
2)											~		
ds402 profile	velocity	0x6081	0	yes	u32	r/w	0	-	-	vel units	С	A	4162
ds402 max acce	leration	0x60C5	0	yes	u32	r/w	0	-	-	acc units	С	Α	4163
ds402 profile	acceleration	0x6083	0	yes	u32	r/w	0	-	-	acc units	С	Α	4164
ds402 motion p	profile type	0x6086	0	yes	s16	r/w	0	-	-	none	Ν	A	4166
ds402 following	g error	0x6065	0	yes	u32	r/w	0	-	-	pos units	Ν	А	4171
window (Note 3													
ds402 position	window	0x6067	0	yes	u32	r/w	0	-	-	pos units	С	A	4172
FEEDBACK VALUES													
ds402 position	demand value	0x6062	0	yes	s32	r	0	-	-	pos units	Ν	А	4167
ds402 position	demand value	0x60FC	0	yes	s32	r	0	-	-	incs	Ν	А	4168
increments													
ds402 position	actual value	0x6064	0	yes	s32	r	0	-	-	pos units	Ν	А	4169
ds402 position	actual value	0x6063	0	yes	s32	r	0	-	-	incs	Ν	A	4170
increments													

MOOG DS2100 User's Manual

SECTION 7: CANOPEN DRIVE PROFILE: DS402

GENERAL PARAMETERS												
ds402 control word	0x6040	0	yes	u16	r/w	0	-	-	none	Ν	А	1650
ds402 status word	0x6041	0	yes	u16	r	0	-	-	none	Ν	Α	1651
ds402 modes of operation	0x6060	0	yes	s08	r/w	0	-	-	none	Ν	А	1652
ds402 modes of operation display	0x6061	0	yes	s08	r	0	-	-	none	Ν	Α	1653
ds402 error code	0x603F	0	yes	u16	r	-	-	-	none	Ν	А	4234

Note 1: ds402 max motor speed is derived from (and can set) motor max velocity and therefore need not be saved to NVM.

Note 2: ds402 max load speed is derived from (and can set) velocity maximum and therefore need not be saved to NVM.

Note 3: ds402 following error is derived from (and can set) position error limit and therefore need not be save to NVM.

7.17 Interpolated Position Mode

The Interpolated Position Mode is used to control multiple coordinated axles or a single axle with the need for timeinterpolation of set-point data. The Interpolated Position Mode uses the sync object as a synchronization mechanism for coordination of the related drive units. For each interpolation cycle, the drive will calculate a position demand value by interpolating positions over a period of time.

Due to real-time requirements, the scaling and limiting of the interpolation data record is done when placing the data in the input buffer. This differs from the diagram in the DS402 standard that suggests that the scaling and limiting is done in real-time. The mode is implemented using linear interpolation only, and does not include the optional limit functions for speed, acceleration and deceleration. Instead the buffer can be seen as a set of position set points for the position loop.

Figure 7.24 Interpolated Position Mode implementation.

The mode is implemented by writing data records into a buffer. The user writes into the data records, which in turn are written into the buffer. The data records can either have 1 or 2 entries. Single entries contain the position set points. Records with 2 entries contain set point, and a time period. In the case of single entry records, the interpolation period is defined in the interpolation period parameter. In the case of records with 2 entries, the interpolation unit is defined in the data record, but the interpolation index (e.g. 10^{-3} , or 10^{-2} , is still read from the interpolation period parameter.)

The buffer can be organised in 2 different ways, as either Ring buffer or FIFO queue, as shown in the diagram below.

- In the case of a FIFO queue, data is written into the queue (buffer position is ignored), and is read out on a first-in-first-out basis. However data is only read on the occurrence of a Synchronisation trigger, (i.e. on every nth occurrence of a CAN sync message). Upon the trigger occurring, all data is read. If additional triggers occur during the resultant move, the triggers are ignored until all data is read.
- The ring buffer is where data can be written in any order into a buffer, using the buffer position parameter, and a ring pointer circularly read the contents of the buffer. There is no synchronisation to read new data from the buffer, but rather, is constantly read. This results in a periodic waveform, with the period of the waveform dependent on the size of the buffer.

Figure 7.25 FIFO and Ring Organisation.

Index	Name	Туре	Comment
0x60C1	interpolation data record.	Array	The input data words that are necessary to perform the interpolation algorithm
0x60C1/0	number of entries	S32	1 or 2, depending on record size $(0x60C4/5)$
0x60C1/1	set point	S32	Target position for the velocity loop.
0x60C1/2	period.	S32	Interpolation period if record size=2. In units of time period index $(0x60C2/2)$.
0x60C2	interpolation time period	Record	Interpolation period in terms of time units, and index.
0x60C2/0	number of entries	U08	Fixed Value = 2
0x60C2/1	units	U08	Default value = 1
0x60C2/2	index	S08	Default value = -3
0x60C3	interpolation sync definition	Array	Configure synchronization of drives, on every nth occurrence of a Sync Object.
0x60C3/0	number of entries	U08	Fixed Value = 2
0x60C3/1	synchronize on	U08	Default value = 0, (i.e. General Sync is used)
0x60C3/2	sync every	U08	Default value = 1, used in FIFO mode.
0x60C4	interpolation data configuration	Record	Configures Max./Actual Buffer Size, Organisation, Position, size of record, etc.
0x60C4/0	number of entries	U08	Fixed Value = 6
0x60C4/1	max buffer size	U32	Default value = 256
0x60C4/2	actual buffer size	U32	Default value = 256 (DS402 indicates 0)
0x60C4/3	buffer organisation	U08	Default value = 0 (0=FIFO, 1=Ring)
0x60C4/4	buffer position	U16	Default value = 0
0x60C4/5	size of data record	U08	Default value = 1
0x60C4/6	buffer clear	U08	Default value = 0. (0=clear buffer, disable access, 1= enable access to input buffer)
0x2855	interpolation buffer	Array of S32	Internal array, which holds the data records that are written by user.
0x2856/2	interpolation sync count	U32	Counter of Syncs received, since buffer cleared or organisation set.

The following table lists the parameters relating to Interpolated Position Mode.

Table 7.18 Table of interpolated position mode parameters

CONTROL WORD

1. The control word is implemented as specified in the DS402 standard, with the following mode specific bits 15 9 8 7 6 5 4 3 0

(see 10.3.1)	Halt	(see	e 10.3.1)	reserved	Enable ip mo	de	(see 10.3.1)
MSB							LSB
	Nan	ne	Value [escription			

Name	Value	Description			
Enable ip	0	Interpolated position mode inactive			
mode	1	Interpolated position mode active			
Halt 0		Execute the instruction of bit 4			
	1	Stop axle			

Figure 7.26 Interpolated Position Mode Control Word.

2. Setting the halt bit will stop the axle, by fixing the position demand (i.e. hold the read pointer at its current location in the input buffer).

STATUS WORD

1. The status word is implemented as specified in the DS402 standard, with the following mode specific bits

Figure 7.27 Interpolated Position Mode Status Word

- 2. The "target reached bit" indicates that the target position has been reached (within position window). If the Halt bit is set, it will indicate if the drive has stopped or not. See Section 7.20 Position Control Function
- 3. The "IP Mode active" bit indicates whether the mode is active or not.

GENERAL ISSUES

- 1. The Sub-Mode Select parameter has not been implemented since only linear interpolation is supported.
- 2. The interpolation time period is scaled internally to the number of position loops periods within this period, and is limited to 1...255. This limits the largest interpolation time period to 255 mSecs. This reduces the range that is specified in DS402, that in theory could go from $1x10^{-128}...255x10^{63}$ Seconds
- 3. In the case of the Ring Buffer no synchronisation occurs, instead the read pointer constantly cycles through the data. In the case of the FIFO, the Synchronisation event (i.e. every X Syncs), causes the drive to read all the data in its buffer. When the end of the data is reached it waits for the next synchronisation trigger.
- 4. Default Actual Buffer Size is set to Max Buffer Size, although standard says it should be 0.
- 5. Units of time period, if in data record, are determined using the interpolation time period index.
- 6. The default value of time period of 1mSec, matches the position loop rate, which means that in effect no interpolation is done, and the buffer contains set points applied to the position loop every position loop period.
- 7. In the case of buffer organisation = FIFO, the queue size is actually one less than the actual buffer size. In this case there will always be one buffer entry which cannot be accessed, since buffer is considered empty if read pointer = write pointer. The buffer is considered full, if incrementing write pointer, would make both pointers equal.
- 8. Since scaling/limiting is done when data is written into the buffer,
 - If the user changes the scaling related parameters such as position factor, position dimension etc... it will have no effect until new data is written into the buffer.
 - If the home position is changed, the data in the buffer will be relative to the home position, when the records were written, not any new home position.
 - If no data has been written to the buffer it contains all zeros. To prevent the drive moving to zero, the position loop reference is set to the current position when the user sets the mode of operation.

- 9. In the case of 2 entries in the data record, the user must write the second entry, before the whole record is written into the buffer. It is not sufficient to write only the first entry, even if the second entry is unchanged
- 10. In the case of a Ring Buffer, disabling the IP Enabled bit in the control word is recommended while the buffer is being reorganised, or its buffer is being updated. If the drive is enabled, the set points will be moved to as the buffer reads them, but this will include both new and old set-points, until the buffer is completely written.
- 11. The contents of the input buffer are not saved to non-volatile memory.
- 12. Modifying the record size in the data configuration record can change the value of actual buffer size, (e.g. if record size is increased to 2, and there is not now enough space for the actual buffer size records, then set actual buffer size to max buffer size.). So changing record size before setting actual buffer size is recommend.
- 13. The Buffer position is zero indexed, (i.e. 0...actual buffer size -1).
- 14. The record size and buffer clear parameters in the data configuration record should be write-only parameters, but instead have been implemented as read-write parameters.
- 15. The internal input buffer is an array of 256 signed32 integers, which can be read from the interpolation buffer parameter (0x2855).
- 16. The count of the received Syncs, which are used for FIFO synchronisation, is reset when the buffer organisation is changed, or when its contents are cleared. A manufacturer specific U32 parameter called *interpolation sync count* (0x2856 / 2) displays the sync count.

SAMPLE SETUP

The following section gives an example of a typical setup for an interpolated position move. It fills the buffer with 5 set-point position of 0,20,40,60, and 80 degrees, and in a ring buffer, cycles through these set-points :-

Index/Sub Index	Name	Value	Comment
0x6040	ds402 control word	0x06	Shutdown command
0x6060	ds402 mode of operation	7	Set Interpolated Position Mode
0x60C2/1	interpolation time period units	250	interpolation period = 250 mS
0x60C2/2	interpolation time period index	-3	
0x60C4/5	interpolation data configuration record size	1	
0x60C4/2	interpolation data configuration actual buffer size	5	Only 5 entries in the buffer
0x60C4/3	interpolation data configuration buffer organisation	1	Set-up for Ring Buffer
0x60C4/6	interpolation data configuration buffer clear	0	Clear out the buffer
0x60C4/6	interpolation data configuration buffer clear	1	Enable access to input buffer
0x60C4/4	interpolation data configuration buffer position	0	Set buffer position
0x60C1/1	interpolation data record set point	0	Write set-point
0x60C4/4	interpolation data configuration buffer position	1	Move buffer position
0x60C1/1	interpolation data record set point	20	Write Position = 20°
0x60C4/4	interpolation data configuration buffer position	2	Move buffer position
0x60C1/1	interpolation data record set point	40	Write Position=40 ⁰
0x60C4/4	interpolation data configuration buffer position	3	Move buffer position
0x60C1/1	interpolation data record set point	60	Write Position=60 ⁰
0x60C4/4	interpolation data configuration buffer position	4	Move buffer position
0x60C1/1	interpolation data record set point	80	Write Position=80 ⁰
0x6040	ds402 control word	0x1F	Enable the drive and the mode.

Table 7.19 Sample set-up for interpolated position mode

SECTION 7: CANOPEN DRIVE PROFILE : DS402

DS2100 User's Manual

7.17.1 Interpolated Position Mode Parameters

Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
INPUT PARAMETERS												
ds402 interp. data record size	0x60C1	0	no	s32	r	1	-	-	None	N	А	4173
ds402 interp. data record position	0x60C1	1	yes	s32	r/w	0	-	-	Pos units	N	A	4174
ds402 interp. data record time	0x60C1	2	yes	s32	r/w	0	-	-	10 ^{ip time period} Sec	N	A	4175
ds402 interp. data config max buffer size	0x60C4	1	yes	u32	r	256	-	-	None	Ν	A	4180
ds402 interp. data config actual buffer size	0x60C4	2	yes	u32	r/w	256	-	-	None	С	A	4181
ds402 interp. data config buffer organisation	0x60C4	3	yes	u08	r/w	0	0	1	None	С	А	4182
ds402 interp. data config buffer position	0x60C4	4	yes	u16	r/w	0	-	-	None	N	А	4183
ds402 interp. data config size of data record	0x60C4	5	yes	u08	r/w	1	1	2	None	С	А	4184
ds402 interp. data config buffer clear	0x60C4	6	yes	u08	r/w	0	-	-	None	С	A	4185
ds402 interp. time period units	0x60C2	1	yes	u08	r/w	1	-	-	10 ^{1p time period} Sec	С	А	4189
ds402 interp. time period index	0x60C2	2	yes	s08	r/w	-3	-128	63	None	С	А	4190
ds402 interp. sync definition sync on group	0x60C3	1	yes	u08	r/w	0	0	0	None	N	A	4193

MOOG

DS2100 User's Manual

SECTION 7: CANOPEN DRIVE PROFILE: DS402

ds402 interp. sync definition	0x60C3	2	yes	u08	r/w	1	-	-	Counts	С	А	4194
every nth event			-									
ds402 interp. data buffer.	0x2855	0	no	s32	r	-	-	-	None	Ν	Α	4198
ds402 interp. sync count	0x2856	2	no	s32	r	0	-	-	Counts	Ν	Α	4201
ds402 position range min	0x607B	1	yes	s32	r/w	-2147483648	-	-	pos units	С	А	1644
ds402 position range max	0x607B	2	yes	s32	r/w	2147483647	-	-	pos units	С	Α	1645
ds402 software position limit	0x607D	1	yes	s32	r/w	-2147483648	-	-	pos units	С	Α	4149
min			-						•			
ds402 software position limit	0x607D	2	yes	s32	r/w	2147483647	-	-	pos units	С	Α	4150
max												
ds402 home offset	0x607C	0	yes	s32	r/w	0	-	-	pos units	С	Α	4147
ds402 following error window	0x6065	0	yes	u32	r/w	0	-	-	pos units	Ν	Α	4171
(Note 2)												
ds402 position window	0x6067	0	yes	u32	r/w	0	-	-	pos units	С	Α	4172
FEEDBACK VALUES												
ds402 position demand value	0x6062	0	yes	s32	r	0	-	-	pos units	Ν	Α	4167
ds402 position demand value	0x60FC	0	yes	s32	r	0	-	-	incs	Ν	Α	4168
increments			-									
ds402 position actual value	0x6064	0	yes	s32	r	0	-	-	pos units	Ν	Α	4169
ds402 position actual value	0x6063	0	yes	s32	r	0	-	-	incs	Ν	Α	4170
increments												
GENERAL PARAMETERS												
ds402 control word	0x6040	0	yes	u16	r/w	0	-	-	none	Ν	А	1650
ds402 status word	0x6041	0	yes	u16	r	0	-	-	none	Ν	А	1651
ds402 modes of operation	0x6060	0	yes	s08	r/w	0	-	-	none	Ν	Α	1652
ds402 modes of operation display	0x6061	0	yes	s08	r	0	-	-	none	Ν	А	1653
ds402 error code	0x603F	0	yes	u16	r	-	-	-	none	Ν	Α	4234

Note 1: ds402 max motor speed is derived from (and can set) motor max velocity and therefore need not be saved to NVM.

Note 2: ds402 following error is derived from (and can set) position error limit and therefore need not be saved to NVM.

7.18 Homing Mode

The homing method is used to determine the home position (also called datum or zero position) of a system, using various methods, and different digital inputs. Profile and interpolated position mode moves are relative to this zero position. The DS2100 supports a numbers of the homing methods specified in DS402, and also implements 4 manufacturer specific modes.

Homing methods 1...4, consist of two phases. The first phase consists of an initial movement, at a "switch search speed", in a direction determined by the method selected and the state of certain digital inputs. The velocity profile of this move is trapezoidal (i.e. ramp from standstill to steady velocity, using a linear ramp, at user defined acceleration). On finding the switch, the drive quick-stops, and does an absolute move to the position of the switch (determined using position registration). When at the switch, the drive starts a second phase, moving at a slower speed, (i.e. "zero search speed"), to find the encoder index pulse. On finding the zero position, the drive quick stops, and does an absolute move to this zero position (again determined using position registration), and sets the home position. A sample of homing method 1 is shown in the diagram below.

Figure 7.28 Homing on the negative limit switch and index pulse.

Homing methods 17...20, consist of only one phase. This phase is similar to that of methods 1...4, (i.e. the faster search for the switch). In the case of these methods, the drive will quick stop, and move to the switch, and does not search for an index pulse.

Homing method 35 simply sets the current position to be the homing position.

Homing methods -1...-4, are similar to methods 1...4, except that they are used when no encoder is present, and the resolver zero position is used instead. In this case, reading the resolver position when the first digital input is hit, and performing an absolute move to the resolver zero position, determines the zero position. No index pulse is required.

Three different digital inputs relate to the homing mode, although all three inputs are not used in any individual method, rather a subset is used. These digital inputs are, positive limit switch, negative limit switch, and homing switch, and need to be configured before using the relevant homing mode. The index pulse is determined internally from the encoder signals.

Index	Name	Туре	Comment
0x607C	home offset	S32	Difference between the zero position and the home position (found during homing), in position units.
0x6098	homing method	U08	Select the method to be used for homing. Methods supported are listed above.
0x6099	homing speed	Array	Defines the speeds used when searching for switch, and searching for zero.
0x6099/0	number of entries	U08	Fixed Value = 2
0x6099/1	switch	U32	Speed during search for switch, Default value = 0
0x6099/2	zero	U32	Speed during search for zero ,Default value = 0
0x609A	homing acceleration	U32	Sets acceleration and deceleration used with all homing modes, in acceleration units.
0x2857/2	home position	S32	Home Position in increments.
0x2858/0	home logical switch status	U08	Home Digital input Logical Status.
0x2859/2	home error state	U16	Home State drive was in when error occurred.
0x2862/0	home error window	S32	Position window between switch and zero, that causes error, in fractions of a rev.

Table 7.20 Table of homing mode parameters

The	tabla	halow	lista	tha	mathada	supported	and	ora	datailad	in	DS402
THE	lable	Delow	lists	the	methous	supported,	anu	are	uetaneu	ш	D3402.

Method	Phase 1		Phase 2	_	Comment
	Dig. Input	Direction	Dig. Input	Direction	
-4	Home ↑	Clockwise	-	Clockwise	Home position set at resolver/encoder zero.
-4	Home ↓	Anti-Clk	-	Clockwise	Home position set at resolver/encoder zero.
-3	Home ↑	Clockwise	-	Anti-Clk	Home position set at resolver/encoder zero.
-3	Home ↓	Anti-Clk	-	Anti-Clk	Home position set at resolver/encoder zero.
-2	Pos Lim	Clockwise	-	Anti-Clk	Home position set at resolver/encoder zero.
-1	Neg Lim	Anti-Clk	-	Clockwise	Home position set at resolver/encoder zero.
0	-	-	-	-	Drive Doesn't Move, Home Pos. unchanged
1	Neg Lim	Anti-Clk	Index Pulse	Clockwise	Home position set when index pulse set.
2	Pos Lim	Clockwise	Index Pulse	Anti-Clk	Home position set when index pulse set.
3	Home ↑*	Clockwise	Index Pulse	Anti-Clk	Home position set when index pulse set.
3	Home ↓	Anti-Clk	Index Pulse	Anti-Clk	Home position set when index pulse set.
4	Home ↑	Clockwise	Index Pulse	Clockwise	Home position set when index pulse set.
4	Home ↓	Anti-Clk	Index Pulse	Clockwise	Home position set when index pulse set.
17	Neg Lim	Anti-Clk	-	-	Home position set when Negative Limit hit,
18	Pos Lim	Clockwise	-	-	Home position set when Positive Limit hit,
19	Home ↑	Clockwise	-	-	Home position set when Home Sw hit.
19	Home ↓	Anti-Clk	-	-	Home position set when Home Sw hit.
20	Home ↑	Clockwise	-	-	Home position set when Home Sw hit.
20	Home ↓	Anti-Clk	-	-	Home position set when Home Sw hit.
35	-	-	-	-	Drive Doesn't Move, Home Pos = current pos.

* The \uparrow is used to indicate an initially inactive state, changing to an active state, and \downarrow is the reverse. Table 7.21 Table of supported homing methods

CONTROL WORD

1. The control word is implemented as specified in the DS402 standard, with the following mode specific bits

15 9	9 8	1	6 5	4	3 0
(see 10.3.1)) Halt	(see 10.3.1)	reserved	Homing operation start	(see 10.3.1)
MSB					LSB

Name	Value	Description
Homing	0	Homing mode inactive
operation start	0 → 1	Start homing mode
	1	Homing mode active
	1 → 0	Interrupt homing mode
Halt	0	Execute the instruction of bit 4
	1	Stop axle with homing acceleration

Figure 7.29 Homing mode Control Word

STATUS WORD

15

MS

1. The status word is implemented as specified in the DS402 standard, with the following mode specific bits

15	14	13		12	11	10	9	0				
(see 10.3	3.2) [†]	Homing error	Ho att	oming ained	(see 10.3.2)	Target reached	(see 10.3	.2)				
MSB								LSB				
	Na	me	Value	Descrip	Description							
	Target 0				Halt = 0: Home position not reached							
	reached			Halt = 1:	Halt = 1: Axle decelerates							
	1				Halt = 0: Home position reached							
				Halt = 1:								
	Hon	ning	0	Homing	mode not yet o	completed						
	attai	ined	1	Homing								
	Hon	ning	0	No homi	ing error							
	er	ror	1	Homing								
				Homing	mode carried o							
	The error cause is fo						the error code					

Figure 7.30 Homing Mode Status Word

- 2. The following events set the Homing Error Bit in the Status Word.
 - Interrupt Homing using control word, (Halt Bit, or Homing Start Bit 1->0). •
 - Limit Switches are active at start of move. ٠
 - Digital Inputs required for method have not been configured. •
 - If index pulse is within home error window revs (default 45 degrees) of switch position. •
 - If the speed is too fast when searching for the zero position. •
 - If invalid entry in homing state table (i.e. Internal Software Error executing NULL). •

The Home Error State (0x2859/2) parameter can be used to determine which state the state machine is in when the error occurs, and thus determine the cause of the error, as outlined in the following table.

Val.	State	Description
2	Check neg. limit switch	Error since neg. limit switch set, before move
3	Check pos. limit switch	Error since pos. limit switch set, before move
5	Set up neg. limit switch	Error since no digital input set up for neg. limit switch
6	Set up pos. limit switch	Error since no digital input set up for pos. limit switch
7	Set up index pulse	Error since pos. feedback != encoder, or Enc. Inc. = 16384.
8	Set up home switch	Error since no digital input set up for home switch
18,23,24	Check zero registration	Error since zero pos. is with error window revs. of switch pos.
-	-	If set halt bit in control word.
-	-	If Homing start bit in control word, 1->0, during homing.
-	-	Homing attempts to execute NULL function.

Table 7.22 Table of homing error state values

GENERAL ISSUES

- 1. If the drive is disabled via the serial text interface the profile generator can still generate the profile, which can result in high speeds, when the drive is enabled, due to large position errors.
- 2. An internal limit in the drive may limit the acceleration further. This drive acceleration limit parameter (in rads/sec) has a default value of 1000000rads/sec. This limit is also used for quick-stopping the drive.
- 3. In the case of 1, 2, 17 and 18, if the limit switch is active at the start, no movement occurs and the error bit is indicated in the status word.
- 4. Changing homing method during a homing move is not recommended, it may only lead to confusion. The method is sampled at the start of the homing move.
- 5. The user must configure the digital inputs so that the correct digital input handler function is associated with the required digital input. This is achieved by writing the number of the digital input handler function to the relevant correct element in the "diginpcfg" entry. The array is zero indexed, with entry 0 always configured for the enable input. The DS402 Digital inputs parameter (0x60FD) has not been implemented since the digital inputs are user configurable. The following are the function numbers

Digital Input	Handler	Example
Positive Limit Switch	6	Diginpcfg[1] 6 (i.e. 0x2C2E/3) sets input 1 to positive limit switch
Negative Limit Switch	7	Diginpcfg[2] 7 (i.e. 0x2C2E/5) sets input 2 to negative limit switch
Homing Switch	8	Diginpcfg[3] 8 (i.e. 0x2C2E/7) sets input 3 to homing switch

Table 7.23 Table of digital input configuration values

6. The default operation of the limit switches is to be active low. This can be inverted by inverting the associated digital input. In addition a parameter called home logical switch status word (0x2858/0) contains the logical status of these digital inputs, and be can used to see which inputs are set, regardless of the digital input mapping.

Figure 7.31 Home logical switch status parameter

- 7. A non-DS402 parameter called home position can be read to display the home position. This value is in increments, and is the value of "position actual" sampled when the homing cycle is complete.
- 8. The Position Polarity is not used during homing mode. This is not explicitly stated in the DS402 standard, but similar modes are available for left and right moves (e.g. method 1, and 2.)
- 9. The user can set a home offset that defines the position of the "zero position" relative to this home position. Profile and Interpolated Position moves are relative to this zero position. Position Limits are however relative to the home position. Parameters such as Position Actual Value (0x6064), Position Demand (0x6062) etc, are also relative to the zero position.

Internal Co-Ordinates (Incs)

Figure 7.32 Homing position co-ordinates

- 10. The DS402 standard indicates that as well as setting the error bit in the status word, that an error code could be written. This is not done; instead the home error state can be used.
- 11. The home position is NOT saved to non-volatile memory, since it is assumed that a homing cycle is done initially on power-up.
- 12. The home offset is saved to non-volatile memory. This means that following power-up, if this value is non-zero, a move with a target position of zero, would still result in the movement of the axis, by the home offset amount.
- 13. In case where large velocities are used during homing. There may be a noticeable reversal of direction when switch or zero position is hit, due to the requirement to return to the registered position when the switch or zero was hit.
- 14. If the homing cycle is interrupted e.g. by causing a shutdown, instead of clearing the "start operation bit", no error is indicated, since mode specific bits are only examined when in enabled state.

15. The operation of the homing method requires on certain positions being reached (e.g. switch and index pulse locations). This requires that there be some integral term in the position control loop, to pull the position error to zero.

SAMPLE SETUP

The following section gives an example of a typical setup for a homing cycle.

Index/Sub Index	Name	Value	Comment
0x2C2E/4	digital input config. [2]	7	Set-up Negative Limit Switch
0x6060	ds402 mode of operation	6	Set-up for Homing Mode
0x6098	homing method	-1	Set-up Homing Method
0x6099/1	homing speed switch	1000	Set Switch Speed=1000 rpm
0x6099/2	homing speed zero	60	Set Zero Speed=60rpm
0x609A	homing acceleration	100	Set homing acceleration=100 rev/sec ²
0x2857/2	home position		Read home position initially=0
0x6041	ds402 status word		Read Status=0x270
0x6040	ds402 control word	0x06	Shutdown command
0x6040	ds402 control word	0x1F	Start the homing cycle
Hit the negative limit	switch, drive will search and	stop at zero pos	ition.
0x6510/10	position resolver		Read dsprespos=0
0x2857/2	home position		Read home position (e.g. $= -3145709$)
0x6041	ds402 status word		Read Status=0x1687
0x6064	ds402 position actual		Read actual position=0.

Table 7.24 Sample set-up for homing mode

MOOG

SECTION 7: CANOPEN DRIVE PROFILE : DS402

DS2100 User's Manual

7.18.1 Homing Mode Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
Ι	NPUT PARAMETERS												
	ds402 home offset	0x607C	0	yes	s32	r/w	0	-	-	pos units	С	А	4147
	ds402 homing method	0x6098	0	yes	s08	r/w	0	-	-	none	С	А	4204
	ds402 homing speeds switch	0x6099	1	yes	u32	r/w	0	-	-	vel units	С	А	4206
	search												
	ds402 homing speeds zero search	0x6099	2	yes	u32	r/w	0	-	-	vel units	С	А	4207
1	ds402 homing acceleration	0x609A	0	yes	u32	r/w	0	-	_	acc units	С	А	4208
(OUTPUT PARAMETERS												
	ds402 home position	0x2857	2	no	s32	r	0	-	-	incs	Ν	А	4203
	ds402 homing logical switch	0x2858	0	no	u08	r	0	-	-	none	Ν	Α	4209
	status												
1	ds402 homing error state	0x2859	2	no	u16	r	0	-	-	none	Ν	А	4218
	ds402 homing error window	0x2862	0	no	f32	r/w	0.125	0.0	0.5	none	С	А	4221
F	EEDBACK VALUES												
	ds402 position demand value	0x6062	0	yes	s32	r	0	-	-	pos units	Ν	Α	4167
1	ds402 position demand value	0x60FC	0	yes	s32	r	0	-	-	incs	Ν	А	4168
	increments												
	ds402 position actual value	0x6064	0	yes	s32	r	0	-	-	pos units	Ν	Α	4169
	ds402 position actual value	0x6063	0	yes	s32	r	0	-	-	incs	Ν	А	4170
	increments												
(GENERAL PARAMETERS												
	ds402 control word	0x6040	0	yes	u16	r/w	0	-	-	none	Ν	A	1650
	ds402 status word	0x6041	0	yes	u16	r	0	-	-	none	N	A	1651
	ds402 modes of operation	0x6060	0	yes	s08	r/w	0	-	-	none	N	A	1652
	ds402 modes of operation display	0x6061	0	yes	s08	r	0	-	-	none	Ν	A	1653
	ds402 error code	0x603F	0	yes	u16	r	-	-	-	none	Ν	Α	4234

7.19 Velocity Control Function

The DS402 standard defines a number of parameters related to velocity, which are particularly relevant when in velocity mode. In addition it also defines a windowing function that is used to determine if a target velocity has been reached, or if the actual velocity is below a certain threshold value. Parameters for configuration and tuning of the velocity loop are manufacturer specific. The DS402 parameters that are defined are listed below: -

Figure 7.33 Velocity control function

Index	Name	Туре	Comment
0x6069	ds402 velocity sensor actual value	S32	Value read from resolver in (incs/sec)
0x606B	ds402 velocity demand value	S32	Output of velocity demand function, in velocity units.
0x606C	ds402 velocity actual value	S32	Sensor Value scaled to be in velocity units
0x606D	ds402 velocity window	U16	Limits (in velocity units) within which target velocity reached bit can be set, in status word.
0x606F	ds402 velocity threshold	U16	If velocity actual value is less than or equal to this value (in velocity units), Speed=0 bit can be set, in status word.

1 able 7.25 1 able of velocity control function parameter

In addition a velocity control parameter set has been defined. It is a grouping of existing drive parameters, into a single ds402 record, (under parameter number 0x60F9). This record is included in the velocity control table of parameters on the following page.

GENERAL ISSUES

- 1. Velocity Window and Velocity Threshold are only used in velocity modes.
- 2. The Velocity Sensor Actual Value, is derived from the velocity in units of incs/Tsamp, and includes the negation of the Velocity Polarity Bit, if the bit is set.
- 3. The velocity window and velocity threshold functions do not implement a window time. There is no duration for which the actual velocity must be within the window, before the target reached bit is set in the status word. Instead if the actual velocity is within the window, the target reached bit is set. Similarly if the actual velocity is less than the threshold, the Speed=0 bit is set and there is no duration involved.

4. The standard lists the velocity control record as an array, rather than a record, this is incorrect, and inconsistent, and a record has been implemented, as shown above.

7.19.1 Velocity Control Parameters

	Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
Γ	NPUT PARAMETERS												
	ds402 velocity window	0x606D	0	yes	u16	r/w	0	-	-	Vel units	С	Α	4229
	ds402 velocity threshold	0x606F	0	yes	u16	r/w	0	-	-	Vel units	С	А	4230
C	UTPUT PARAMETERS												
	ds402 velocity demand value	0x606B	0	yes	s32	r	0	-	-	Vel units	Ν	А	4231
1	ds402 velocity actual value	0x606C	0	yes	s32	r	0	-	-	Vel units	Ν	А	4232
	ds402 velocity sensor actual value	0x6069	0	yes	s32	r	0	-	-	Incs/sec	Ν	А	4233
V	ELOCITY CONTROL PARAMETER SET												
	velocity loop rate divider	0x60F9	1	no	s16	r/w	1	1	-	none	С	А	1136
	position mode velocity loop p-gain	0x60F9	2	no	f32	r/w	0.05	0.0	-	Nm/rad/s	С	А	1305
	position mode velocity loop i-gain	0x60F9	3	no	f32	r/w	2.0	0.0	-	Nm/rad	С	А	1306
	position mode velocity loop error	0x60F9	4	yes	f32	r	-	-	-	Inc/Tsamp	Ν	А	1307
	velocity mode p-gain	0x60F9	5	no	f32	r/w	0.05	0.0	-	Nm/rad/s	С	А	1317
	velocity mode i-gain	0x60F9	6	no	f32	r/w	2.0	0.0	-	Nm/rad	C	A	1318
	velocity mode ie-gain	0x60F9	7	no	f32	r/w	0.0	0.0	-	none	C	A	1319
	velocity mode error	0x60F9	8	yes	f32	r	-	-	-	Inc/Tsamp	Ν	A	1320

7.20 Position Control Function

The DS402 standard defines a number of parameters related to position, which are particularly relevant when in position mode. In addition it also defines windowing functions that are used to determine if a target position has been reached (actual position is within a certain window of the target position), or if a following error exists (actual position is within a certain window of the demand position). Parameters for configuration and tuning of the position loop are manufacturer specific. The DS402 parameters that are defined are listed below:

Index	Name	Туре	Comment
0x6062	ds402 position demand value	S32	Output from Demand Block in position units.
0x6063	ds402 position actual value inc*	S32	Actual value from the position measurement device, in incs.
0x6064	ds402 position actual value	S32	Actual value from the position measurement device, in pos. units.
0x6065	ds402 following error window	U32	The Delta between demand and actual position, if greater than this window (in position units), will set the following error bit in the status word.
0x6067	ds402 position window	U32	The Delta between target and actual position, if less than or equal to this window, (in position units) it will set the target reached bit in the status word.
0x60FC	ds402 position demand value inc*	S32	Output from Demand Block in units of increments.

* Is used in DS402 to indicate it is in increments rather than position units.

 Table 7.26
 Table of position control function parameters

In addition a position control parameter set has been defined. It is a grouping of existing drive parameters, into a single ds402 record, (under parameter number 0x60FB). This record is included in the position control table of parameters on the following page.

GENERAL ISSUES

- 1. Position Window and Following Error Window are only used in position modes.
- 2. Position Actual Value and Position Actual Value* are both relative to the home/zero position.

- 3. The position window and following error window functions do not implement a window time. There is no duration for which the actual position must be within the window, before the target reached bit is set in the status word. Instead if the actual position is within the window, the target reached bit is set. Similarly, if the following error is within the window, the following error bit is set and there is no duration involved.
- 4. The ds402 following error window, is tied to the position error limit (in radians) parameter of the drive. The resolution of the position error limit, is limited to that of the ds402 position units. Therefore rounding may occur when the position error limit is set, to accommodate a corresponding fixed point ds402 following error window. For example, with default settings of position units of degrees, if the user sets a position error limit of 0.01 rads, it is actually set to a value of 0.01745 rads, corresponding to a ds402 following error of 1 degree.

DS2100 User's Manual

7.20.1 Position Control Parameters

Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
INPUT PARAMETERS												
ds402 following error window	0x6065	0	yes	u32	r/w	0	-	-	pos units	Ν	Α	4171
ds402 position window	0x6067	0	yes	u32	r/w	0	-	-	pos units	С	Α	4172
OUTPUT PARAMETERS												
ds402 position demand value	0x6062	0	yes	s32	r	0	-	-	pos units	Ν	А	4167
ds402 position demand value increments	0x60FC	0	yes	s32	r	0	-	-	inc	Ν	А	4168
ds402 position actual value	0x6064	0	yes	s32	r	0	-	-	pos units	Ν	Α	4169
ds402 position actual value increments	0x6063	0	yes	s32	r	0	-	-	inc	Ν	Α	4170
POSITION CONTROL PARAMETER SET												
position loop rate divider	0x60FB	1	no	s16	r/w	2	1	-	none	С	А	1137
position PI loop p-gain	0x60FB	2	no	f32	r/w	2.0	0.0	-	1/s	С	А	1326
position PI loop i-gain	0x60FB	3	no	f32	r/w	0.0	0.0	-	$1/s^2$	С	А	1327
position PI loop error	0x60FB	4	yes	f32	r	-	-	-	inc	Ν	Α	1328
position TO loop error	0x60FB	5	yes	f32	r	-	-	-	inc	Ν	Α	1337
position TO loop ka-gain	0x60FB	6	no	f32	r/w	519.75	0.0	-	rads/s ²	С	А	1347
position TO loop kp-gain	0x60FB	7	no	f32	r/w	20.0	0.0	-	1/s	С	А	1349
position TO loop enable velocity integrator	0x60FB	8	no	f32	r/w	6.28	0.0	-	rad	С	А	1350

PAGE INTENTIONALLY BLANK

APPENDIX A DATA LOGGER

APPENDIX A: DATA LOGGER

TABLE OF CONTENTS

APPENDIX A	A DATA LOGGER	A-1
A.1 Dat	TA LOGGER	A-3
A.1.1	Input channels	A-3
A.1.2	Time base	A-4
A.1.3	Trigger	A-4
A.1.4	Data Access	A-5
A.1.5	Example	A-6
A.1.6	Data logger parameters	A-7
A.1.7	Trigger parameters	A-8
A.1.8	Data logger scaling and output parameters	A-9

A.1 Data Logger

The data logger is an internal storage oscilloscope with up to four input channels, trigger function and time base. It can be used to store fast events or to store information that caused fault conditions. The sampled data can be downloaded from the embedded controller onto a computer and analysed.

Normally the data logger functions should be used from within the Moog graphical user interface. The following description is intended for users that want to implement their own data logger front-end.

A.1.1 Input channels

Up to four input channels can be used to sample any internal 8-, 16-, 24- or 32-bit wide integer or 32-bit and 64-bit floating point parameter. The channel is enabled by writing the field number to be sampled into *data_logger_channel* (index 0x2f02, subindex 1 - 4) and setting the *data_logger_enable* (index 0x2f01, subindex 1 - 4) parameter to 0x01, where the index into the array is the channel number (0-3). The number of samples to be taken is the parameter *data_logger_memory_size* (index 0x2f00, subindex 3). The maximum number of samples that can be taken is limited by the available memory and depends on the parameters sampled.

The samples are written into an internal memory array in sequential order, e.g. 1^{st} sample of first enabled channel, 1^{st} sample of second enabled channel, until all channels are processed and then 2^{nd} sample of first enabled channel 2^{nd} sample of second enabled channel and so on. The data cannot be read directly from the internal memory. There are various parameters available to extract the data from the memory.

A.1.2 Time base

The data logger normally runs at the main interrupt frequency of the controller (PWM frequency) or a fraction of this. The main interrupt frequency can be read with the parameter *data_logger_sample_frequency* (index 0x2f00, subindex 2). The divider ratio can be set with the parameter *data_logger_divider_factor* (index 0x2f00, subindex 1). The resulting sample frequency is then *data_logger_sample_frequency / data_logger_divider_factor*.

A.1.3 Trigger

The trigger controls the sampling of the data syncronized to a trigger input which can be any of the 8-, 16-, 24- or 32-bit integer or 32-bit or 64-bit floating point parameters. It is possible to have a delayed trigger or pre-trigger. The possible trigger coupling can be dc, ac or bitmap masking, the slope can be rising, falling or both.

A.1.3.1 Trigger modes

The parameter trigger mode *trigger_mode* (index 0x2f04, subindex 1) controls the trigger and the sampling. There are four different trigger modes available:

0x00	-	free running trigger: always sampling
0x01	-	normal trigger: waiting for trigger event and start sampling, retriggerable
		after sampling has finished
0x02	-	single shot trigger: after trigger event only one set of samples taken
0x03	-	stopped: no samples taken

A.1.3.2 Trigger status

The actual trigger status can be read back reading parameter *trigger_status* (index 0x2f04, subindex 13). It has one of the four possible values:

0x00	-	system is beeing initialised; data logging not possible
0x01	-	waiting for trigger event
0x02	-	sampling
0x03	-	ready, sampled data can be accessed

The samples can be only read from the data logger memory when the trigger status is ready. In single shot triggering the data logger will go automatically into the ready state. In free running mode or normal trigger mode the data trigger mode has to be set to stopped. After finishing the sampling, the data logger will then automatically go into the ready state.

A.1.3.3 Trigger input

The trigger input is selected by setting the trigger channel parameter *trigger_field_number* to the field number of the parameter that is used for triggering the sampling process. The coupling is selected by setting the *trigger_coupling* (index 0x2f04, subindex 3) parameter:

0x00	-	ac coupled trigger input
0x01	-	dc coupled trigger input
0x02	-	bitmask trigger

The trigger level can be set with the *trigger_level_xxxx* parameters. The data type has to match the data type of the parameter sampled. For example, if a 16-bit integer value is used for triggering, then *trigger_level_16-bit* has to be set. The trigger levels also hold the bit mask for the bit mask trigger mode. Only bits that are 1 in the mask are used for triggering. More than one bit can be set to one.

The trigger slope parameter *trigger_slope* (index 0x2f04, subindex 4) selects if triggering is done on the rising or falling edge of the trigger input. If bit mask trigger is used a 0-1 transition is taken as a rising and a 1-0 transition is taken as a falling input signal.

0x01	-	trigger on rising edge
0x02	-	trigger on falling edge
0x03	-	trigger on both edges

Normally the sampling would start at the trigger event. If the sampling has to be delayed, or if the samples shall be taken before the trigger event, the position of the trigger event within the samples can be selected using the trigger delay parameter *trigger_delay* (index 0x2f04, subindex 11). It holds the number of the samples before the trigger event.

A.1.4 Data Access

A.1.4.1 Scaled data access

To improve performance and to make the interface easier there are parameters available that allow the reading of scaled data for each channel with only one byte per channel and sample transmitted.

The offset *data_logger_scaling_offset* (index 0x2f06, subindex 1 - 4) is added to the value and the result is then multiplied with the scaling factor *data_logger_scaling_factor* (index 0x2f05, subindex 1 - 4). The result is then rounded to the nearest signed 8-bit value and can be accessed by reading the parameter *data_logger_channel_x*. The number of bytes transmitted is always DLGDIS (500). The transmitted data can be selected from the sampled data by writing to the parameter *data_logger_sample_number* (index 0x2f07, subindex 1) before reading the data which represents the number of the first data sample to be transmitted relative to the trigger position.

A.1.5 Example

- 1. set trigger mode to stop ($trigger_mode = 0x03$)
- 2. wait until trigger status is initialised (*trigger_status*: 0x00)
- 3. set number of samples to 1000 (*data_logger_memory_size* = 1000)
- 4. disable channels 1 to 3 ($data_logger_enable[1-3] = 0x00$)
- 5. enable channel 0 ($data_logger_enable[0] = 0x01$)
- 6. set channel 0 input to field number of position (*data_logger_channel*[0] = field number actual drive position)
- 7. set pre divider to 1 (*data_logger_divider_factor* = 1)
- 8. set trigger input to parameter number of position (*trigger_field_number* = field number actual drive position)
- 9. set trigger coupling to dc (*trigger_coupling* = 0x01)
- 10. set trigger slope to rising ($trigger_slope = 0x01$)
- 11. set trigger level to 0 (*trigger_level_32-bit* = 0)
- 12. set trigger delay to 0 ($trigger_delay = 0$)
- 13. set trigger mode to single (*trigger_mode* = 0x02). trigger status should go to waiting for trigger (*trigger_status*: 0x01)
- 14. move position around zero position trigger status should go to sampling (trigger_status: 0x02)
- 15. wait until trigger status is ready (trigger_status: 0x03)
- 16. read DLGDIS (500) samples from data logger channel data (*data_logger_channel_0*)

A.1.6 Data logger parameters

Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
data_logger_sample_frequency	0x2f00	2	no	u32	R	9920	-	-	Freq. units	Ν	Α	1751
data_logger_divider_factor	0x2f00	1	no	u16	R/W	1	1	-	None	Ν	А	1750
data_logger_memory_size	0x2f00	3	no	s16	R/W	500	500	8000	None	Ν	Α	1752
data_logger_enable	0x2f01	1-4	no	u08	R/W	0,0,0,0	-	-	None	Ν	Α	1753
data_logger_channel	0x2f02	1-4	no	u16	R/W	1000,1000, 1000,1000	-	-	None	N	А	1754

A.1.7 Trigger parameters

Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
trigger_mode	0x2f04	1	no	u08	R/W	0x03	-	0x03	None	Ν	Α	1755
trigger_field_number	0x2f04	2	no	fld	R/W	1000	-	-	None	Ν	Α	1756
trigger_coupling	0x2f04	3	no	u08	R/W	0x01	-	0x02	None	Ν	Α	1757
trigger_slope	0x2f04	4	no	u08	R/W	0x01	0x01	0x03	None	Ν	Α	1758
trigger_level_8-bit	0x2f04	5	no	u08	R/W	-	-	-	None	Ν	Α	1759
trigger_level_16-bit	0x2f04	6	no	u16	R/W	-	-	-	None	Ν	Α	1760
trigger_level_24-bit	0x2f04	7	no	u24	R/W	-	-	-	None	Ν	Α	1761
trigger_level_32-bit	0x2f04	8	no	u32	R/W	-	-	-	None	Ν	Α	1762
trigger_level_float	0x2f04	9	no	f32	R/W	-	-	-	None	Ν	Α	1763
trigger_level_double	0x2f04	10	no	f64	R/W	-	-	-	None	Ν	А	1764
trigger_delay	0x2f04	11	no	s16	R/W	-	-	-	None	Ν	Α	1765
trigger_status	0x2f04	13	no	u08	R	-	-	-	None	Ν	А	1767

A.1.8 Data logger scaling and output parameters

Parameter Name	CANopen Index	CANopen sub-index	PDO mapping	Data Type	Access	Default Value	Minimum Value	Maximum Value	Units	Storage Type	Data Group	Field Number
data_logger_scaling_factor	0x2f05	1-4	no	f32	R/W	-	-	-	None	Ν	Α	1768
data_logger_scaling_offset	0x2f06	1-4	no	f32	R/W	-	-	-	None	Ν	Α	1769
data_logger_sample_number	0x2f07	1	no	s16	R/W	-	-	-	None	Ν	Α	1770
data_logger_channel_0	0x2f08	0	no	s08	R	-	-	-	None	Ν	Α	1771
data_logger_channel_1	0x2f09	0	no	s08	R	-	-	-	None	Ν	Α	1772
data_logger_channel_2	0x2f0a	0	no	s08	R	-	-	-	None	Ν	Α	1773
data_logger_channel_3	0x2f0b	0	no	s08	R	-	-	-	None	N	A	1774

Page Intentionally Blank

APPENDIX B GUI

B.1 Contents

APPENDIX F	3 GUI	B-1
B 1 CON	TENTS	B-2
B 2 INTR	ODUCTION	B-4
B.2 INTR	System Requirements	B-4
B 2 2	Installation	B-4
B 3 GET	TING STARTED / COMMON FEATURES	B-5
B 3 1	Introduction	
B 3 2	Starting WinDrive	<i>D-5</i> <i>B</i> -5
B 3 3	Jaunchar	<i>D</i> 5 <i>B</i> -5
B 3 A	Main Window	D-5 R 6
B 3 5	Main Manu	<i>D</i> -0
D.J.J B 3 6	Toolhar	D-0 R 6
D.J.0 B 3 7	Status Bar	D-0 R 6
D.J.7 B38	Status Dut	<i>D-0</i>
D.J.0 R 3 0	Panal View	D-7 B &
D.J.9 D 2 10	Panel View Toolhan	D-0 D 0
D.3.10 D.2.11	Funet View 1000001	<i>D-</i> 0
D.J.11 D 2 12	Event Logger	D-У
D.J.12	Lveni Logger Toolbar	D-9
B.3.13	Macro Player	B-10
B.3.14	Macro Player Toolbar	B-10
B.3.15	Driver	B-12
B.3.10	Panel Descriptions	B-13
B.3.16.	RS232 Interface Mode	B-13
D.3.10. B 3 16 3	2 Sollwale ID	
B 3 164	Controller Front Panel	
B 3 16 4	5 Control with GUI	B-15
B.3.16.0	5 Control with Step Function Generator	B-16
B.3.16.7	7 Control with Sine Function Generator	B-17
B.3.16.8	3 CANOpen Setup Configuration	B-18
B.3.16.9	CANOpen Non-Standard Features	B-19
B.3.16.	10 CANOpen State	B-20
B.3.16.	11 DS402 Factor Group Input	B-21
B.3.16.	12 DS402 Factor Group Output	B-22
B.3.16.	13 DS402 Supported Drive Modes	B-23
B.3.10.	14 DS402 Common Entries	B-24
B 3 16	15 DS402 Device Control Falanciers	В-23 В-26
B 3 16	17 DS402 Status Word	B-27
B.3.16.	18 DS402 Direct Toraue Mode	B-28
B.3.16.	19 DS402 Direct Velocity Mode	B-29
B.3.16.2	20 DS402 Profile Velocity Mode	B-30
B.3.16.2	21 DS402 Direct Position Mode	B-31
B.3.16.2	22 DS402 Profile Position Mode	
B.3.16.2	23 DS402 Interpolated Position Mode	
B.3.16.2	24 DS402 Homing Mode	
B.3.16.2	25 CAN Receive/Transmit PDO 1 - PDO 2 – PDO 3 – PDO 4	
B.3.16.	26 Position Mode Preset	
D.3.10. R 3 16 '	27 v clochy Mode Preset	
B 3 16	29 Feedback Sources	42
B 3 16	30 Limiting Configuration	43
B.3.16	31 I2T Limiting	
B.3.16.	32 Thermal Limiting	
B.3.16.	33 Manual Mode Limiting	

APPENDIX B: GUI

DS2100 User's Manual

R 3 16 34	Limiting Status	18
D.3.10.34	Connect Local	
B.3.16.35	Current Loop	
B.3.16.36	Velocity Loop Compensators	
B.3.16.37	Position PI Loop Compensators	
B.3.16.38	Position TO Loop Compensators	
B 3 16 39	Nominal Bus Voltage	54
B 3 16 40	SOFTSTART VOLTAGE PARAMETERS	55
D 2 16 41	Continuous Dus Voltage	
D.3.10.41		
B.3.16.42	Generic Filters	
B.3.16.43	Velocity Feedback Filters	
B.3.16.44	Command Direction	
B.3.16.45	Current Limits	60
B 3 16 46	Velocity Limits	61
B 3 16 47	Acceleration Limits	67
D.3.10.47		
B.3.10.48	Regen Parameters	
B.3.16.49	Internal Regen	
B.3.16.50	External Regen	
B.3.16.51	Digital Input Configuration	
B.3.16.52	Digital Output Configuration	
B 3 16 53	Motor Parameters	69
B 3 16 54	Resolver Parameters	70
D.3.10.34 D 2 16 55	Encoder Deremotora	
D.3.10.33		
B.3.16.56	Commutation Parameters	B-/2
B.3.16.57	Moog Standard Motors: Full Database	B-73
B.3.16.58	Moog Nonstandard Motors	B-74
B.3.16.59	Status	B-76
B.3.16.60	General Status Byte	B-77
B 3 16 61	Board Status Ryte 1	B-78
B 3 16 62	Board Status Byte 7	B 70
D.3.10.02	Doard Status Dyte 2	
B.3.10.03	Board Status Byte 5	B-80
B.3.16.64	Board Status Byte 4	B-81
B.3.16.65	Exception Status Byte 1	B-82
B.3.16.66	Exception Status Byte 2	B-83
B.3.16.67	Exception Status Byte 3	B-84
B.3.16.68	Memory Status Byte 1	B-85
B 3 16 69	Memory Status Byte 2	B-86
D 2 16 70	Dower Status Date 1	D 00
D.3.10.70	Power Status Dyte 1	
B.3.16./1	Power Status Byte 2	B-88
B.3.16.72	Software Status Byte I	B-89
B.3.16.73	Software Status Byte 2	B-90
B.3.16.74	Database Status Byte	B-91
B.3.16.75	CANOpen Status Byte	B-92
B 3 16 76	Drive Status Byte 1	B-93
B 3 16 77	Drive Status Byte 7	B 0/
D.3.10.77	Drive Status Dyte 2	
D.3.10.78	Drive Status Byte 5	D-93
В.3.16.79	Drive Status Byte 4	B-96
B.3.16.80	Drive Status Byte 5	B-97
B.3.16.81	Diagnostic Information	B-98
B.3.16.82	Clear Faults	B-99
B 3 16 83	Temperatures	B-100
B 3 16 84	Voltages	B-101
D.3.10.04	FTI's	D 107
D.3.10.03	$\mathbf{D}_{\mathbf{r}}$ = $\mathbf{D}_{\mathbf{r}}$ = $\mathbf{L}_{\mathbf{r}} = 1/2$ = $-1/2$	D-102
В.3.16.86	Drive Parameter Load/Save	B-103
B.3.16.87	Encoder Parameter Load/Save	B-104
B.3.16.88	Parameter Database	B-105
B.3.16.89	Oscilloscope	B-106
B.3.16.90	Firmware Upgrade	B-108
B 3 16 91	Parameter Database Unload	B-109
B 3 16 07	Demo Mode	R 100
$\mathbf{p}_{2,16,02}$	Configuration Unload	109 - 109 110 D
D.3.10.93	Configuration Deventor d	
В.3.16.94	Configuration Download	B-112
B.3.16.95	Unit Selection	B-112
B.3.16.96	Fault History	B-114
D 2 1 (07	Device Information	B-115

B.2 Introduction

This manual describes the installation and operation of the Moog WinDrive application.

B.2.1 System Requirements

Minimum PC requirement	586 / Pentium processor
-	16MB RAM (128MB recommended)
	30MB free space on hard disk
Operating System	Windows 98, Windows ME, Windows NT 4.0 (Service Pack 6
	or later), Windows 2000, Windows XP
Minimum Screen Size	800x600, 1024x768 recommended

B.2.2 Installation

WinDrive should be installed by running setup.exe from the File Manager or from the Program Manager. In Program Manager you can do this from Run... under the File menu item. Type D:\setup.exe in the command line (if your CD drive is drive E, type E:\setup.exe, etc.). Alternatively, you can double-click setup.exe in File Manager.

The installation program will take the user through all the necessary installation steps. Any necessary folders to launch WinDrive will automatically be created in the Start menu. The installation program will also attempt to install the Java Runtime Environment (JRE), which is required to run WinDrive. If this is already installed, a notification message will be displayed, which will ask the user whether the JRE is to be uninstalled. The user should cancel this operation. The installation process will then complete.

MOOG

B.3 Getting Started / Common Features

B.3.1 Introduction

Moog WinDrive is a graphical user interface (GUI) application that is used to configure Moog Servo-Drives. It has been developed to provide a common "look and feel" for configuring a wide range of Moog controllers. For each controller or controller family there is a corresponding configuration within WinDrive. A particular configuration is chosen on startup of WinDrive. The chosen configuration will determine which controller specific dialogs and panels are displayed within WinDrive and which protocol is used to communicate with the controller.

B.3.2 Starting WinDrive

From the Windows Start menu, select Start/Programs/WinDrive/WinDrive GUI to launch the application.

B.3.3 Launcher

The Launcher dialog box is displayed after starting WinDrive. It displays the available configurations available for the particular release of WinDrive. Note that depending on what Moog product WinDrive was shipped with, the list of available configurations may differ. When the Launcher dialog is displayed, select the required configuration.

To determine which version is required look at the model number label on the drive: For a drive named G361-xxxxA-00-000 or G361-xxxxA-01-000 select DS2100v0.1. For a drive named G361-xxxxA-02-000 select DS2100v0.2. Click "Open".

B.3.4 Main Window

The Main Window is displayed after selecting a controller configuration and clicking Open in the Launcher dialog box. The Main Window consists of a number of components described below.

Moog WinDrive 3.02 - DS2100 v0.2 Configuration
File Navigator Driver View Help
▲ 8 8 → ■ 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
B22100 R3232 Interface Mode Strate ID Schware ID Controller Access Level Controller Access Level Controller Access Level Control with Step Function Generator Control with Step Function Generator Control with Step Function Generator Control with Step Function Generator Control with Step Function Generator Control with Step Function Generator Control with Step Function Generator Control with Step Function Generator Control with Step Function Generator Control with Step Function Generator Control with Step Function Generator Control with Step Function Generator Generator Steps Parameter Ditabase Control with Step Function Generator Occilicocope Finance Updade Parameter Database Control with Step Function Unit Selection Unit Selection Unit Selection Unit Selection Unit Selection Unit Selection Unit Selection Event Info
Event Logger: 0 Macro Player: 0
Event Type Name Number Value Status Timestamp Macro Type Number Value
Parameter Read eulacc 15003 N/A N/A Mon Jul 24 08:59
parameter kead jeulacc j 15003 4 kead Successful (Mon Jul 24 UB:59

B.3.5 Main Menu

The Main Menu is located at the top of the Main Window.

B.3.6 Toolbar

The Toolbar is located directly under the Main Menu. The toolbar is used to perform common tasks in the application. Parts of the toolbar are configuration specific and are described in the relevant section of each particular configuration. An example toolbar is given in the figure below.

B.3.7 Status Bar

The Status Bar is located to the right of the Toolbar. The Status Bar displays short status messages that indicate the current state of WinDrive. Generally, a green background indicates that no fault occurred while a red background indicates that a fault occurred in the application.

Status: Read Successful (Controller ACK)

APPENDIX B: GUI

B.3.8 Navigator

The Navigator is one of the four large panels in the Main Window. It is located at the top left of the Main Window, directly under the Toolbar. The Navigator panel contains one or more navigator tabbed panels. These panels display a tree. The tree is the principal method of navigating around WinDrive. The tree is configuration specific and thus may differ between different configurations. To open a panel in the panel view, click on the corresponding node in the tree. The panel will then be opened in the panel view.

DS2100 0.2 : 0
DS2100 0.2 : 0 Software ID Controller Access Level Controller Front Panel Control with GUI Control with Step Function Generator Control with Sine Function Generator Control with Sine Function Generator Control with Step Function Step Firmware Utilities Parameter Database Oscilloscope Firmware Upgrade Parameter Database Upload Demo Mode Demo Mode Unit Selection Unit On Request Fault History Device Info

B.3.9 Panel View

The Panel View is one of the four large panels in the Main Window. It is located at the top right of the Main Window, directly under the Status Bar. The Panel View can be empty, or contain one or more configuration specific panels. Clicking on nodes within the Navigator tree typically opens these panels. The panels displayed in the Panel View are the main area of interaction between the user and the controller. They are typically used to display controller parameters and to modify the values of these parameters. To open panels in the Panel View, use the tree in the Navigator panel, described in the previous section.

Current Limits : 0 Velocity Limits : 0 Ac	celeration Limits : 0 Re	gen:0 Encoder:0			
	Encoder	Parameters			
Encoder Type	No Encoder 📃 💌	Parameters for SSI Enco	der Only		
Encoder Supply Voltage	+5V	Number Of Bits For SSI Interface	13		
No. of Increments	1024	Data Encoding For SSI Interface	Gray Code 📃 💌		
Encoder Direction	Clockwise 💌	Bit Mask For SSI Interface	4294967292		
Encoder Resolution	10				
Encoder Offset (incs.)	0				
Encoder Position	0				
Encoder Commutation Position	0				

B.3.10 Panel View Toolbar

The Panel View Toolbar consists of the following buttons.

Continuous Update

If the Continuous Update toggle button is depressed, all controls within the displayed panel are continuously updated from the controller via a parameter read.

Write All

Clicking the Write All button forces a parameter write for each control displayed within the panel.

Read All

Clicking the Read All button forces a parameter read for each control displayed within the panel.

MOOG

B.3.11 Event Logger

The Event Logger is one of the four large panels in the Main Window. It is located at the bottom left of the Main Window, directly under the Navigator. The purpose of the Event Logger is to allow the user to record any parameter read and / or parameters write events. Logging events can be useful in order to see what is being read from or written to the controller at the lowest level. For each logged event the event type, parameter name, parameter number, value, status, and timestamp are logged.

Event Logger : 0					
Event Type	Name	Number	Value	Status	Timestamp
Parameter Read	euiacc	15003	N/A	N/A	Fri Dec 10 14:02:
Parameter Read	euiacc	15003	4	Read Successful	Fri Dec 10 14:02:
Parameter Read	euiacc	15003	N/A	N/A	Fri Dec 10 15:00:
Parameter Read	euiacc	15003	4	Read Successful	Fri Dec 10 15:00:

B.3.12 Event Logger Toolbar

The Event Logger toolbar consists of the following buttons.

Start Logging

If the Start Logging toggle button is depressed, the Event Logger logs those events whose filter toggle buttons (i.e. Log Read Parameter or Log Write Parameter) also are depressed.

Stop Logging

If the Stop Logging toggle button is clicked, all logging is stopped. Clicking the Start Logging button can recommence logging.

Clear Log

Clicking the Clear Log button completely clears the Event Logger.

Log Read Parameter

The Log Read Parameter toggle button needs to be depressed if any parameter read events are to be logged.

Log Write Parameter

The Log Write Parameter toggle button needs to be depressed if any parameters write events are to be logged.

B.3.13 Macro Player

The Macro Player is one of the four large panels in the Main Window. It is located at the bottom right of the Main Window, directly under the Panel View.

Macro Player : 0		
	📑 🖶 🖶 🖉	A 🚯
Macro Type	Number	Value

B.3.14 Macro Player Toolbar

The Macro Player toolbar consists of the following buttons.

Start Recording

If the Start Recording toggle button is depressed, the Macro Player records those events whose filter toggle buttons (i.e. Record Read Parameter or Record Write Parameter) also are depressed.

Stop Recording

If the Stop Recording toggle button is clicked, all recording is stopped. Clicking the Start Recording button can recommence recording.

Clear Macro

Clicking the Clear Macro button completely clears the Macro Player.

DS2100 User's Manual

Play Macro

Clicking the Play Macro button commences playing the currently loaded macro.

Record Read Parameter

The Record Read Parameter toggle button needs to be depressed if any parameter read events are to be recorded.

Record Write Parameter

The Record Write Parameter toggle button needs to be depressed if any parameters write events are to be recorded.

Clicking the Save Macro button displays a file save dialog box, which allows the user to save the current macro.

WARNING – Only SI units are supported when downloading parameters using the Macro Player. Changing parameter units in a saved macro and downloading to a drive may result in unexpected motor performance.

Load Macro

2

Clicking the Load Macro button displays a file open dialog box, which allows the user to load a previously saved macro.

Configuration Upload

Clicking the Configuration Upload button displays the Save Configuration File dialog box. In this dialog box a file can be specified to which the current controller configuration will be saved. By clicking the Save button in this dialog after having specified a file and directory in which to save the configuration, the configuration upload procedure will be commenced. Once the upload has been completed a message is displayed to the user.

Configuration Download

Clicking the Configuration Download button displays the Load Configuration File dialog box. In this dialog box a previously saved configuration file (see Configuration Upload) can be specified. This configuration can then be downloaded to the controller.

B.3.15<u>Driver</u>

🗕 Moog	WinDrive 3.02 - DCC Driver	_ 🗆 🗙
Protocol	Help	
Sock	et Port	
	Open Close 1200	01
Client	Connection	
	Close Client connected	

The Moog WinDrive Driver runs as a separate process from the WinDrive GUI. It is started automatically when WinDrive is opened. To display the driver dialog box, click on the driver's icon on the Windows Task bar. The driver performs all communication with the controller. Its purpose is to implement various protocols that are used to communicate with various controllers. Depending on which protocol is used, the protocol name is displayed in the title bar of the dialog. The WinDrive GUI communicates with the driver via a TCP/IP socket connection.

The Driver Dialog menu consists of the following items:

Protocol – This menu and any submenus are protocol specific. Help / About Driver – Displays the Driver About Box. This dialog contains the driver version information.

The following controls are part of the Driver Dialog:

Socket Port – Opens the socket to listen on the specified port for connection requests from the GUI. Socket Port – Closes the socket port Client Connection / Close – Closes the connection to the WinDrive GUI if it is connected.

C27750-001

DS2100 User's Manual

B.3.16 Panel Descriptions

B.3.16.1 RS232 Interface Mode

DS2100 0.2 : 0	Controller Mode : 0	Right click in this area and press "Close" to
Controller Access Level	Controller Mode Control and Status	shut any panel
Controller Front Panel Control with GUI Control with Step Function Generator Control with Step Function Concretor	Controller Mode Status	no longer required.
E-Control with Sine Function Generator	Entering the following modes will disable this interface	
Prive Setup Motor Setup Prive Application Specific Setups Status and Faults Prameter Utilities Parameter Database	Enter Text Mode Text Mode	

- Controller Mode Control & Status → This parameter allows the user to view the Controller Mode Status.
- Enter Text Mode → This parameter allows the user to switch the controller from the GUI interface to the text interface. After this switch the GUI cannot communicate with the controller until the controller interface is reset.

B.3.16.2 Software ID

The Software ID panel allows the user to see embedded software version and FPGA version information. **This information is only available at higher access levels.**

File Navigator Driver View Help	
	Status: Read Successful (Caritholier ACK)
D52100 0.2 : 0	Software ID : 0
D52100	? C + t
R5232 Interface Mode	
Software ID	Coffman Unitian and ID Information
Controller Access Level	Sortware version and ID Information
Controller Front Panel	
Control with GUI	

B.3.16.3 Controller Access Level –

The Controller Access Level dialog allows the user to set the controller access level.

D52100 0.2 : 0	
🚞 D52100	
R5232 Interface Mode	Controller Assess Lowell VI
Software ID	
Controller Access Level	Password
Controller Front Panel	
Control with GUI	Controller Access Level 4
Control with Step Function Generator	
Control with Sine Function Generator	Submit Password Close
🗄 💼 CANopen	
🗄 💼 Drive Setup	

The default access level is 4, but entering a password may set higher levels. Full configuration of a drive and motor is possible at access level 4. Consult Moog Application Engineering if higher level access is required.

B.3.16.4 Controller Front Panel

The Controller Front Panel contains a picture of the DS2100 front panel (µA Size)

B.3.16.5 Control with GUI

The Control with GUI panel allows the user to control the drive directly from the GUI and set the command into the appropriate control loop.

\$2100:0				
KS232 Interface Mode Software D Controller Access Level	Mo	Control at D	tive from GUI	dback
Controller Front Parent Entroit visite Cla Control with Step Function Generator Control with Size Function Generator	Status	Realizerant M	Control Loop Command (Ince) Position (red)	0
Image: Security Barrier Application Image: Setup <	Guick-Step Stop Drive Disabile Drive Enable Drive Hold Drive Velocity mode Standary mode	Guids-Stop Stop Disable Enable Hold Velocity Position Stanuby	Velocify (radit) Actual Torque (Nin)	231.7

- Status → This displays the current mode of the drive. This may be blank if the drive is not being controlled using this panel.
- Mode Control \rightarrow These buttons allow the user to set the drive mode.

Command/Feedback

- Control Loop Command The input to the control loop in internal increments. The command is interpreted according to the mode of the controller in position mode this is a position command; in velocity mode, a velocity command; in torque mode, a torque command.
- Position \rightarrow The actual position in radians
- Velocity \rightarrow The actual velocity in rad/s
- Torque \rightarrow The actual torque in Nm.

B.3.16.6 Control with Step Function Generator

The Control of Drive with Step Function Generator panel allows the user to control the drive directly from the GUI and use the internal step function generator to set the command into the loop.

- Drive Mode Status → This displays the current mode of the drive. This may be blank if the drive is not being controlled using this panel. On start-up the drive defaults to standby mode (1306).
- Mode Control \rightarrow These buttons allow the user to set the drive mode.
- Function Generator Setup → This allows the user to set the function generator Amplitude, Offset, Period and Duty Cycle commands. The units of amplitude and offset are changed according to the controller mode (position rad, velocity rad/s, torque Nm).
- Maximum current → This parameter allows the user to see the maximum current capability of the drive/motor system to assist with using the function generator with the drive in torque mode.
- Maximum velocity → This parameter allows the user to see the maximum velocity capability of the drive/motor system to assist with using the function generator with the drive in velocity mode.

DS2100 User's Manual

B.3.16.7 Control with Sine Function Generator

The Control of Drive with Sine Function Generator panel allows the user to control the drive directly from the GUI and use the internal sine function generator to set the command into the loop.

D52100 0.2 : 0	Sine Function Generator : 0			
D52100	? C I T			
R5232 Interface Mode				
Software ID				
Controller Access Level		Control of Drive from 9	Sine Euloction Generator	
Controller Front Panel		Concror or prive from .		
Control with GUI	Mode Control		Function generator	setup
Control with Step Function Generator				
Control with Sine Function Generator	Drive Mode Status	1306 💌	Amplitude (rad/s)	0.000000
E CANopen			offert (melle)	0.000000
🕀 💼 Drive Setup			Orrset (rad)s)	0.00000
🗄 💼 Motor Setup	Standby (F. Gen OFF)	Standby	Frequency (Hz)	0.0
庄 💼 Application Specific Setups	, , ,		,,	[
庄 💼 Status and Faults	Torque	Trq		
庄 💼 Parameter Utilities				
Parameter Database	Torque (Field Weakening ON)	Trq (FW)	Actual Position (rad)	150744.6043
Oscilloscope	Velocity	Vel		
Firmware Upgrade		*0		
Parameter Database Upload	Velocity (Field Weakening ON)	Vel (FW)	Maximum value	s
Demo Mode				
🕀 💼 Configuration Upload/Download	Position PI	Pos PI	Maximum Current (A)	22.0
Unit Selection	Desition DT (Field Westering ON)	Dee DT (EW)	Manian an University (and a)	000.06000
Unit On Request	Posicion P1 (Held Weakening ON)	POSPI(FW)	Maximum velocity (rdu/s)	222,20093
Fault History	Position TO	Pos TO		
Device Info				
	Position TO (Field Weakening ON)	Pos TO (FW)		

- Drive Mode Status → This displays the current mode of the drive. This may be blank if the drive is not being controlled using this panel. On start-up the drive defaults to standby mode (1306).
- Mode Control \rightarrow These buttons allow the user to set the drive mode.
- Function Generator Setup → This allows the user to set the function generator Amplitude, Offset, Period and Duty Cycle commands.
- Maximum current → This parameter allows the user to see the maximum current capability of the drive/motor system to assist in using the function generator with the drive in torque mode.

i

B.3.16.8 CANOpen Setup Configuration

The CANOpen Setup Configuration panel allows the user to set fundamental CAN communication parameters.

NOTE: For further CANOpen information see Section 7 of this manual.

DS2100 0.2 : 0 CANOpen setup : 0 ٠ e DS2100 RS232 Interface Mode Software ID CANOpen Setup Configuration Controller Access Level Controller Front Panel CAN Controller Controller 1 • Control with GUI Control with Step Function Generator Control with Sine Function Generator 1000000 🚊 💼 CANopen Bit Rate Setup Configuration Non-Standard Features State DS402 Factor Group Input DS402 Factor Group Output

- CAN Controller → This parameter allows the user to choose CAN controller between Controller 1 and Controller 2. This should always remain at Controller 1.
- Bit Rate → This parameter allows the user to set the bit rate for the CAN bus. The following bit rates are supported:
 - o 10000 bits per second
 - o 20000 bits per second
 - o 50000 bits per second
 - o 125000 bits per second
 - o 250000 bits per second
 - o 500000 bits per second
 - o 800000 bits per second
 - o 1000000 bits per second

DS2100 User's Manual

B.3.16.9 CANOpen Non-Standard Features

This panel provides access to some additional functionality beyond the CANOpen standard.

D52100 0.2 : 0	CA	NOpen non-standard : 0	
DS2100 RS232 Interface Mode		? <mark>C ↓ ↑</mark>	
Software ID Controller Access Level		CHIOLOG Neg Chardende	•
Controller Front Panel		CANOpen Non-Standard H	eatures
Control with GUI	ci	AN Interface	Enabled 💌
Control with Step Function Generator Control with Sine Function Generator	a	onfiguration Word	1
🚊 💼 CANopen			
Setup Configuration			
Non-Standard Features	M M	ax Missing Syncs	0
State	II		
DS402 Factor Group Input DS402 Factor Group Output		um Syncs for calc	5
DS402 Factor Group Output DS402 Supported Drive Modes	l s	ync Tx pre-divider	5
DSH02 Dipported Drive Modes DSH02 Drive/Motor Common Parameters			
DS402 Device Control Parameters			

- CAN Interface \rightarrow This parameter allows the user to enable or disable CAN interface.
- Configuration Word → This is a bit mask that provides some alternative CANOpen startup modes. The bits in this parameter arte defined as follows:
 - BIT ACTION (when bit is true in configuration word)
 - 0 transmit boot-up complete message
 - 1 none
 - 2 transmit SYNC messages from controller
 - 3 auto start transition through to CANOpen 'operational' mode without waiting for node start command
 - 4 auto calculate SYNC period
 - 5 none
 - 6 none
 - 7 none
- Max missing syncs → A fault is detected after this number of sync periods passes with no SYNC message being received
- Num syncs for calc \rightarrow the number of sync messages used for the auto calculate function
- Sync Tx pre-divider \rightarrow the multiple of 2ms at which the sync is transmitted if this function is enabled

B.3.16.10 CANOpen State

D52100 0.2 : 0	CANOpen State : 0	
D52100	? C ↓ ↑	
Controller Access Level	CANOpen	State Machine
Controller Front Panel	CANOpen State	Pre-Operati 💌
Control with Step Function Generator	Sync Period	0
CANopen CANopen Setup Configuration		
Non-Standard Features		
DS402 Factor Group Input		

- CANOpen State \rightarrow This parameter allows the user to view the CANOpen state. Sync period \rightarrow The sync period can be set manually. •
- •

B.3.16.11 DS402 Factor Group Input

The DS402 Factor Group Input Parameters panel allows the user to set factor group input parameters for scaling between physical units used by the user, and internal units of the drive.

- Position Notation Index→ This parameter allows the user to select the position notation index (the power of 10 for the position units).
- Position Dimension Index→ This parameter allows the user to select the position dimension unit type between meters ,radians ,seconds, minutes, degrees and revs.
- Velocity Notation Index→ This parameter allows the user to select the velocity notation index (the power of 10 for the velocity units).
- Velocity Dimension Index → This parameter allows the user to select the velocity dimension unit type between m/sec, m/min, m/hour, rev/sec, rev/min and rev/hour.
- Acceleration Notation Index→ This parameter allows the user to select the acceleration notation index (the power of 10 for the acceleration units).
- Acceleration Dimension Index→ This parameter allows the user to select the acceleration unit type between m/sec^2, m/min^2, rev/sec^2 and rev/min^2.
- Position Polarity \rightarrow This parameter allows the user to invert the position polarity.
- Velocity Polarity \rightarrow This parameter allows the user to invert the velocity polarity.
- Position Encoder Resolution incs→ Used in conjunction with the 'position encoder resolution revs' parameter to set the position encoder resolution.
- Position Encoder Resolution revs→ Used in conjunction with the 'position encoder resolution incs' parameter to set the position encoder resolution. Resolution = incs/rev
- Vel. Encoder Resolution incs/sec→ Used in conjunction with the 'position encoder resolution revs/sec' parameter to set the position encoder resolution.
- Vel. Encoder Resolution revs/sec→ Used in conjunction with the 'position encoder resolution incs/sec' parameter to set the position encoder resolution. Resolution = (incs/sec)/(revs/sec)
- Gear Ratio motor revs → Used in conjunction with the 'Gear Ratio shaft revs to set the gear ratio.
- Gear Ratio shaft revs → Used in conjunction with the 'Gear Ratio motor revs' parameter to set the gear ratio. Gear Ratio = motor revs/shaft revs.
- Feed Constant feed → Used in conjunction with the 'Feed Constant shaft revs to set the feed constant.
- Feed Constant shaft revs → Used in conjunction with the 'Feed Constant feed' parameter to set the feed constant. Feed Constant = feed/shaft revs.

B.3.16.12 DS402 Factor Group Output

The DS402 Factor Group Output panel allows the user to view factor group output parameters for scaling between physical units used by the user , and internal units of the drive.

- Position Factor Numerator/Denominator (position units to increment) → This parameter allows the user to see the position factor fraction. The fraction's value depends on input parameters.
- Vel. Encoder Factor Numerator/Denominator (velocity units to incs./sec) → This parameter allows the user to see the vel.encoder factor fraction. The fraction's value depends on input parameters.
- Velocity Factor 1 Numerator/Denominator (velocity units to RPM) \rightarrow This parameter allows the user to see the velocity factor 1 fraction. The fraction's value depends on input parameters.
- Velocity Factor 2 Numerator/Denominator (pos.enc.res./vel.enc.res.) \rightarrow This parameter allows the user to see the velocity factor 2 fraction. The fraction's value depends on input parameters.
- Acceleration Factor Numerator/Denominator (Accel. units to incs./sec^2) → This parameter allows the user to see the acceleration factor fraction. The fraction's value depends on input parameters.

B.3.16.13 DS402 Supported Drive Modes

The DS402 Supported Drive Modes panel allows the user to see which DS402 modes are supported.

D52100 0.2 : 0	DS402 Supported Drive Modes : 0	1			
D52100 R5232 Interface Mode	? C ↓ ↑				
Software ID					
Controller Access Level	DS402 Supported Drive Modes				
Controller Front Panel					
Control with GUI	DS402 STAND	D5402 STANDARD MODES		D5402 MANUFACTURER SPECIFIC MODES	
Control with Step Function Generator					
Control with Sine Function Generator	Profile Position Mode	Supported	Direct Torque Mode	Supported	
📮 💼 CANopen	Velocity Mode	Not Supported	Direct Velocity Mode	Supported	
 Setup Configuration 		net supported	Diroce folder, filodo		
Non-Standard Features	Profile Velocity Mode	Supported	Direct Position Mode	Supported	
State					
DS402 Factor Group Input	Torque Profile Mode	Not Supported	Direct Position Mode No-Trigger	Supported	
DS402 Factor Group Output	II used a state	C			
D5402 Supported Drive Modes		Supporced			
D5402 Drive/Motor Common Parameters	Interpolated Position Mode	Supported			
 DS402 Device Control Parameters 		poppercod			
DS402 Control Word					

DS402 STANDARD MODES \rightarrow This parameter allows the user to see a list of supported standard DS402 modes.

DS402 MANUFACTURER SPECIFIC MODES \rightarrow This parameter allows the user to see a list of supported manufacturer (Moog) specific modes.

B.3.16.14 DS402 Common Entries

This panel displays parameters that are common to all DS402 modes

D52100 0.2 : 0	D5402 Common Entries : 0		
DS2100	? C ↓ ↑		
Controller Access Level	D5402 Common Entries Parameters		
Controller Front Panel			
Control with GUI	Error Code 0x7303		
Control with Step Function Generator	Supported Drive Modes		
	ds402 http drive catalog address www.moog.com		
Non-Standard Features			
State			
DS402 Factor Group Input			
DS402 Factor Group Output			
DS402 Supported Drive Modes			
DS402 Drive/Motor Common Parameters			
DS402 Device Control Parameters			

- Error Code → This parameter corresponds to the lower 16 Bits of the pre-defined error field (0*1003).
- Supported Drive Modes → This parameter is a numerical code of supported modes which are 4 standard modes + 4 manufacturer specific.
- DS402 HTTP drive catalog address → This parameter allows the user to see the default value of www.moog.com.

DS2100 User's Manual

D52100 0.2 : 0	D5402 Device Control Parameters : 0	1
DS2100 RS232 Interface Mode Software ID Controller Access Level Controller Front Panel Constroller File Controller	DS402 Device Contr	ol Parameters
Control with Step Function Generator		
Control with Sine Function Generator	Status Word	0x82a8
E-CANopen	Modes of Operation	Not Defined 🗨
Non-Standard Features	Modes of Operation Display	Not Defined 💌
DS402 Factor Group Input		
DS402 Factor Group Output		
 DS402 Supported Drive Modes 		
DS402 Drive/Motor Common Parameters		
D5402 Device Control Parameters		
DS402 Control Word		

- Control Word \rightarrow This parameter allows the user to control the transitions between the drive states by setting the bits in the DS402 control word.
- Status Word → This parameter allows the user to see the status of the drive by the settings of specific bits in the DS402 status word.
- Modes of Operation → This parameter allows the user to select one of the eight supported drive models.
- Modes of Operation Display \rightarrow The actual mode of operation of the drive

B.3.16.16 DS402 Control Word

The DS402 Control Word panel allows the user to set control word bits individually.

DS2100 0.2 : 0	DS402 Control Word : 0						
DS2100] ? ┍ ∔ ↑						
R5232 Interface Mode							
Sortware ID							
Controller Access Level	D5402 Control Word						
Controller Front Panel							
Control with GUI	General Bits		Position Mode Bits				
Control with Step Function Generator Control with Sine Function Generator	Bit0 - Switch On	False 💌	Bit4 - New Set-Point	False 💌			
	Bit1 - Enable Voltage	False 🔻	Bit5 - Change Set Immediately	False 💌			
Non-Standard Features	Bit2 - Ouickstop	False 💌	Bit6 - Absolute / Relative (PPM Only)	Absolute 💌			
State	[] x						
DS402 Factor Group Input	Bit3 - Enable Operation	False 💌	Homing Mode Bits				
DS402 Factor Group Output							
DS402 Supported Drive Modes	Bit7 - Fault Reset	False 💌	Bit4 - Homing Operation Start	False 💌			
DS402 Drive/Motor Common Parameters	Bits - Halt	False	Interpolated Position Mode Bits				
DS402 Device Control Parameters		, aso	Interpolated Position Pilote bits				
DS402 Control Word	Bit15 - Apply Brake	False 🔻	Bit4 - Enable IP Mode	False 🔻			
DS402 Status Word		,					
DS402 Direct Torque Mode							

- General Bits \rightarrow These are used in all DS402 modes
- Position Mode Bits \rightarrow Used only in Profile and Direct position modes
- Homing Mode Bits \rightarrow Used only in Homing mode
- Interpolated Position Mode Bits \rightarrow Used only in Interpolated position mode

B.3.16.17 DS402 Status Word

The DS402 Status Word panel allows the user to see the state of the drive.

- General Bits \rightarrow Valid in all modes
- Position Mode Bits → Valid only in profile and direct position modes
- Velocity Mode Bits \rightarrow Valid only in velocity mode
- Homing Mode Bits \rightarrow Valid only in homing mode
- IP Mode Active \rightarrow Valid only in interpolated position mode

B.3.16.18 DS402 Direct Torque Mode

D52100 0.2 : 0	D5402 Direct Torque Mode : 0			
Controller Access Level		DS402 Direct Torque Mode	(Manu Specific) Parameters	
Controller Front Panel		bo for billoct forgat filed	(indian specificy) and inecers	
Control with GUI	INPUT PA	RAMETERS	OUTPUT PA	RAMETERS
Control with Step Function Generator	Motor Rated Torque	1	Torque Demand Value	0
CANopen	Target Torque	0	Torque Actual Value	-7687
Non-Standard Features	Max Torque	65535		
State State DS402 Factor Group Input DS402 Factor Group Output DS402 Supported Drive Modes	CONTROL	WORD BITS		
D5402 Drive/Motor Common Parameters D5402 Device Control Parameters D5402 Control Word D5402 Status Word D5402 Status Word	Halt	False		
DS402 Direct Velocity Mode				

INPUT PARAMETERS \rightarrow Allows the user to setup the input parameters of direct torque mode. The parameters are:

- Motor Rated Torque \rightarrow In units of Nm. (rotational).
- Target Torque \rightarrow Set-Point for Torque, in units of per thousand of rated torque.
- Max Torque \rightarrow Max permissible Torque, in units of per thousand of rated torque.

OUTPUT PARAMETERS \rightarrow Allows the user to see the value of the two output parameters. The parameters are:

- Torque Demand Value → Output of torque limiting function, in units of per thousand of rated torque.
- Torque Actual Value → Instantaneous Torque in the drive motor, in units of per thousand of rated torque.

CONTROL WORD BITS \rightarrow Allows the user to set/clear the halt bit.

MOOG

DS2100 User's Manual

D52100 0.2 : 0	DS402 Direct Velocity Mode : 0			
DS2100 RS232 Interface Mode	? ᢗ ↓ ↑			
Software ID Controller Access Level		DS402 Direct Velocity Med	o (Manu - Sporific) Davamators	
Controller Front Panel		D3402 Direct velocity mou	e (Maria: Specific) Parameters	
Control with GUI	INPUT PARAM	METERS	FEEDBACK PARAMET	ERS
Control with Step Function Generator Control with Sine Function Generator	Target Velocity (Vel Units)	0	Velocity Sensor Actual Value (incs/sec)	-56240272
E-CANopen	Max Load Speed (Vel Units)	9549	Velocity Demand Value (Vel Units)	0
Non-Standard Features State	Max Motor Speed (rpm)	9549	Velocity Actual Value (Vel Units)	-88689
DS402 Factor Group Input			STATUS WORD BIT	'S
 DS402 Factor Group Output DS402 Supported Drive Modes 	VELOCITY CONTROL	PARAMETERS	Target Reached	FALSE
DS402 Drive/Motor Common Parameters DS402 Device Control Parameters	Velocity Window (Vel Units)	0	Speed=0	FALSE
DS402 Control Word	Velocity Threshold (Vel Units)	0		
DS402 Direct Torque Mode				
DS402 Direct velocity Mode DS402 Profile Velocity Mode	CONTROL WO	RD BITS		
D5402 Direct Position Mode D5402 Profile Position Mode	Halt	False 💌		

INPUT PARAMETERS \rightarrow Allows the user to setup the input parameters of direct velocity mode. The parameters are:

- Target Velocity \rightarrow Input/Set-Point for velocity, in velocity units.
- Max Load Speed \rightarrow Maximum system speed for velocity loop, in rpm.
- Max Motor Speed \rightarrow Maximum allowable speed of motor, in rpm.

FEEDBACK PARAMETERS \rightarrow Allows the user to see the value of the three feedback parameters. The parameters are:

- Velocity Sensor Actual Value \rightarrow Value read from resolver in (incs/sec).
- Velocity Demand Value \rightarrow Output of velocity demand function, in velocity units.
- Velocity Actual Value \rightarrow Sensor Value scaled to be in velocity units.

VELOCITY CONTROL PARAMETERS \rightarrow Allows the user to setup the velocity control parameters. The parameters are:

- Velocity Window → Limits (in velocity units) within which target velocity reached bit can be set, in status word.
- Velocity Threshold → If velocity actual value is less than or equal to this value (in velocity units), Speed=0 bit will be set in status word.

STATUS WORD BITS \rightarrow Allows the user to see the status word bits.

- Target Reached \rightarrow Indicates that the target velocity has been reached, within the velocity window.
- Speed= $0 \rightarrow$ Indicates that the speed is at zero (less than the velocity threshold).

CONTROL WORD BITS \rightarrow Allows the user to set/clear the halt bit.

B.3.16.20 DS402 Profile Velocity Mode

In this mode, a target velocity is input to a profile generator. It generates a velocity demand profile for the velocity control loops, with further inputs to the profile generator limiting its output.

INPUT PARAMETERS \rightarrow This parameter allows the user to setup the input parameters of profile velocity mode. The parameters are:

- Target Velocity → Input/Set-Point for velocity, in velocity units.
- Max Profile Velocity → Maximum speed allowed during a profile move, in velocity units. This
 value is limited to the lower value of the following 2 parameters (Max Load Speed and Max
 Motor Speed)
- Max Load Speed \rightarrow Maximum speed of the system, used in the velocity loop.
- Max Motor Speed \rightarrow Maximum allowable speed of motor, in rpm.
- Profile Acceleration \rightarrow Used to define acceleration of moves, in acceleration units.
- Max Acceleration → The max acceleration can be used to limit the profile acceleration, in acceleration units.
- Motion Profile Type → Used to select the type of motion profile to perform. Only linear ramp (trapezoidal profile) is implemented.

FEEDBACK PARAMETERS \rightarrow This parameter allows the user to see the value of the three feedback parameters. The parameters are:

- Velocity Sensor Actual Value \rightarrow Value read from resolver in (incs/sec).
- Velocity Demand Value \rightarrow Output of velocity demand function, in velocity units.
- Velocity Actual Value → Sensor Value scaled to be in velocity units.

VELOCITY CONTROL PARAMETERS \rightarrow This parameter allows the user to set up the velocity control parameters. The parameters are:

- Velocity Window → Limits (in velocity units) within which target velocity reached bit can be set, in status word.
- Velocity Threshold \rightarrow If velocity actual value is less than or equal to this value (in velocity units), Speed=0 bit can be set, in status word.

STATUS WORD BITS \rightarrow This parameter allows the user to see the status word bits.

- Target Reached → Indicates that the target velocity has been reached, within the velocity window.
- Speed= $0 \rightarrow$ Indicates that the speed is at zero (less than the velocity threshold).

CONTROL WORD BITS \rightarrow Allows the user to set/clear the halt bit.

DS2100 User's Manual

B.3.16.21 DS402 Direct Position Mode

In this mode, a target position is set and limited to create a position demand. No profile generator is used.

INPUT PARAMETERS \rightarrow Allows the user to setup the input parameters of direct position mode. The parameters are:

- Target Position \rightarrow Input Position for absolute move, in position units.
- SW. Range Limit Min/Max → Range limiting on demand, in position units. The extreme fixed values are -2^31 and 2^31 -1.
- SW. Position Limit Min/Max \rightarrow Limit on demand in position units, relative to home position. The extreme fixed values are -2^{31} and 2^{31-1} .
- Max Load Speed \rightarrow Maximum speed of the system, used in the velocity loop.
- Home Offset → Delta between the zero position and the home position (found during homing), in position units.
- Position Window → Delta between target and actual position, if less than or equal to this window, (in position units) it will set the target reached bit in the status word.

FEEDBACK PARAMETERS \rightarrow Allows the user to see the value of the four feedback parameters. The parameters are:

- Position Demand Value \rightarrow Output from Demand Block in position units.
- Position Demand Value* \rightarrow Output from Demand Block in units of increments.
- Position Actual Value \rightarrow Actual value from the position measurement device, in position units.
- Position Actual Value* \rightarrow Actual value from the position measurement device, in incs.

STATUS WORD BITS \rightarrow Allows the user to see the status word bits.

- Target Reached \rightarrow Indicates that the target velocity has been reached, within the velocity window.
- Set Point Acknowledge \rightarrow Indicates if the Drive has assumed the positioning values or not.

CONTROL WORD BITS \rightarrow Allows the user to set the control word bits.

- New Set Point \rightarrow Set the next target position.
- Change Set Immediately \rightarrow Interrupt the actual positioning and then start the next positioning.

B.3.16.22 DS402 Profile Position Mode

In this mode, a target position is input to a profile generator. It generates a position demand profile for the position control loops, with further inputs to the profile generator shaping is output.

INPUT PARAMETERS \rightarrow Allows the user to setup the input parameters of profile position mode. The parameters are:

- Target Position \rightarrow Input to profile generator in position units.
- SW. Range Limit Min/Max → Range limiting on demand, in position units. The extreme fixed values are -2^31 and 2^31 -1.
- SW. Position Limit Min/Max \rightarrow Limit on demand in position units, relative to home position. The extreme fixed values are -2^{31} and 2^{31-1} .
- Profile Velocity \rightarrow Used to define acceleration of moves, in acceleration units.
- Max Profile Velocity→ Max speed allowed during a profile move, in velocity units. This value is limited to the lower value of the following 2 parameters (Max Load Speed and Max Motor Speed)
- Max Load Speed \rightarrow Maximum speed of the system, used in the velocity loop.
- Max Motor Speed \rightarrow Maximum allowable speed of motor, in rpm.
- Profile Acceleration \rightarrow Used to define acceleration of moves, in acceleration units.
- Max Acceleration \rightarrow Used to limit the profile acceleration, in acceleration units.
- Position Window → The Delta between target and actual position, if less than or equal to this window, (in position units) it will set the target reached bit in the status word.
- Following Error Window → Allows the user to set the size of the window for the position following error. If the following error is outside this window then a position following error will be flagged.
- Home offset → This shows the offset measured in the homing mode. The user can also set it without performing a homing sequence if required.
- Motion Profile Type → This indicates the type of profile used. Only a 'linear ramp' type is available currently.

APPENDIX B: GUI

DS2100 User's Manual

FEEDBACK PARAMETERS \rightarrow Allows the user to see the value of the three feedback parameters. The parameters are:

- Position Demand Value \rightarrow Output from Demand Block in position units.
- Position Demand Value* \rightarrow Output from Demand Block in units of increments.
- Position Actual Value \rightarrow Actual value from the position measurement device, in position units.
- Position Actual Value* \rightarrow Actual value from the position measurement device, in incs.

CONTROL WORD BITS \rightarrow Allows the user to set the control word bits.

- New Set Point \rightarrow Set the next target position.
- Change Set Immediately \rightarrow Interrupt the actual positioning and then start the next positioning.
- Absolute/Relative (PPM Only) \rightarrow Select whether target value is absolute or relative.

STATUS WORD BITS \rightarrow Allows the user to see the state of word bits.

- Target Reached \rightarrow Indicates that the target position has been reached.
- Set Point Acknowledge \rightarrow Indicates if the Drive has assumed the positioning values.

B.3.16.23 DS402 Interpolated Position Mode

This mode is used to control multiple coordinated axles or a single axle with the need for timeinterpolation of set-point data. The IP Mode uses the sync object as a synchronization mechanism for coordination of the related drive units. For each interpolation cycle, the drive will calculate a position demand value by interpolating positions over a period.

IMPUT PARAMETERS \rightarrow Allows the user to setup the input parameters of interpolated position mode.

The parameters are:

- Inter. Data Record Size/Position/Time → The input data words that are necessary to perform the interpolation algorithm.
- SW. Range Limit Min/Max → Range limiting on demand, in position units. The extreme fixed values are -2^31 and 2^31 -1.
- SW. Position Limit Min/Max \rightarrow Limit on demand in position units, relative to home position. The extreme fixed values are -2^{31} and 2^{31-1} .
- Max Load Speed \rightarrow Maximum speed of the system, used in the velocity loop.
- Inter. Data Config. Max. Buffer Size \rightarrow Shows the maximum interpolation buffer size
- Inter. Data Config. Actual Buffer Size → Allows the user to set the required interpolation buffer size.
- Inter. Data Config. Buffer Org. → Allows the user to select the interpolation buffer type (FIFO or Ring).
- Inter. Data Config. Buffer Pos. \rightarrow The position in the interpolation buffer.
- Inter. Data Config. Size of Record \rightarrow The size of each record in the interpolation buffer.
- Inter. Data Config. Buffer Clear \rightarrow Clear/disable or else enable the interpolation buffer.
- Inter. Time Period Units → The size of the interpolation time period. This is defined in units of 'Inter. Time Period Index' seconds.
- Inter. Time Period Index → The seconds power of 10 per unit used for the interpolation time period.
- Inter. Sync Defn Sync on → The signal used for interpolation synchronisation this can only be set to 'general sync'

- Inter. Sync Defn every nth event → interpolation synchronization performed at this number of sync's
- Position Window→ The Delta between target and actual position, if less than or equal to this window, (in position units) it will set the target reached bit in the status word.
- Interpolation Buffer → The interpolation buffer is an internal array, which holds the data records that are written by user.

FEEDBACK PARAMETERS \rightarrow Allows the user to see the value of the four feedback parameters. The parameters are:

- Position Demand Value \rightarrow Output from Demand Block in position units.
- Position Demand Value* \rightarrow Output from Demand Block in units of increments.
- Position Actual Value \rightarrow Actual value from the position measurement device, in position units.
- Position Actual Value* \rightarrow Actual value from the position measurement device, in incs.

CONTROL + STATUS WORD BITS

- Enable IP Mode \rightarrow It allows the IP Mode to be enabled or disabled
- Halt \rightarrow Allows the user to set/clear the halt bit.
- Target Reached \rightarrow Indicates that the target position has been reached
- IP mode active \rightarrow Indicates that interpolated position mode is active

B.3.16.24 DS402 Homing Mode

This method is used to determine the home position (also called datum or zero position) of a system, using various methods, and different digital inputs.

- Homing Method → Select the method to be used for homing. There are 4 manufacturer specific modes.
- Homing Switch Speed \rightarrow Speed during search for switch
- Homing Zero Speed \rightarrow Speed during search for zero
- Homing Acceleration → Sets acceleration and deceleration used with all homing modes, in acceleration units.
- Home Offset → Difference between the zero position and the home position (found during homing), in position units

MANUF. SPECIFIC PARAMETERS \rightarrow Allows the user to see the value of the six manufacturer specific parameters.

The parameters are:

- Home Position \rightarrow Home Position in increments.
- Homing Error State \rightarrow Home State drive was in when error occurred.
- Homing Error Window → Position window between switch and zero, that causes error, in fractions of a rev.
- Positive Limit Switch \rightarrow Indicates if positive limit is active or not.
- Negative Limit Switch \rightarrow Indicates if negative limit is active or not.

FEEDBACK PARAMETERS \rightarrow Allows the user to see the value of the four feedback parameters.

The parameters are:

- Position Demand Value \rightarrow Output from Demand Block in position units.
- Position Demand Value* \rightarrow Output from Demand Block in units of increments.
- Position Actual Value \rightarrow Actual value from the position measurement device, in position units.

CONTROL WORD BITS

- Homing Operation Start \rightarrow Activate the homing mode.
- Halt \rightarrow Allows the user to set/clear the halt bit.

STATUS WORD BITS

- Target Reached \rightarrow It shows if Home position is reached.
- Homing Attained \rightarrow It shows if Homing mode is successfully completed.
- Homing Error \rightarrow It shows if a Homing error has occurred.

B.3.16.25 CAN Receive/Transmit PDO 1 - PDO 2 - PDO 3 - PDO 4

The drive supports up to 4 receive and up to 4 transmit Process Data Objects (PDOs) The contents can be specified using PDO mapping. The granularity of the PDO mapping is a byte.

- Enable/Disable → Enable or disable the CAN Receive or Transmit PDO. A PDO should be disabled before changes are made to its configuration (ID, transmission type or mapping)
- Communication Object ID → the 11 LSB's of this parameter are set to the COB ID. Bit 30 is always 1 and bit 29 is always 0
- Transmission Type \rightarrow The transmission type as defined by CANOpen standard DS301. (For example, 255 is an asynchronous event driven transmission type.)
- PDO Mapping → The PDO mapping is the mechanism that allows the user to change the contents of the process data objects. To change the PDO mapping, the parameter 'Number Mapped Objects' should be set to 0, then the new parameters to be mapped written in the 'PDO_Mapping' array and then the number of mapped parameters should be written into 'Number Mapped Objects'. Make sure that not more than 8 bytes are used up in this mapping process. If trying to map more than 8 bytes into one PDO, writing of 'Number Mapped Objects' will cause an error.

The Position Mode Preset panel allows the user to set the mode request when a position control mode is requested. The default value for this parameter is 34776 (87D8 hex) indicating that bits 3, 4, 6, 7, 8, 9, 10 and 15 are set. Note that bit 6 must always be set in this parameter; bits 0 and 1 must never be set in position mode.

The user can set the following commands:

- Acceleration Limiting \rightarrow ON/OFF (bit 10)
- Command Micro Interpolation \rightarrow ON/OFF (bit 9)
- d,q Gain Calibration \rightarrow ON/OFF (bit 8)
- Time Optimal Position Loop \rightarrow ON/OFF (bit 7)
- Position Mode \rightarrow ON/OFF (bit 6)
- Field weakening \rightarrow ON/OFF (bit 5)
- Observer \rightarrow ON/OFF (bit 4)
- Generic Filter \rightarrow ON/OFF (bit 3)

B.3.16.27 Velocity Mode Preset

The Velocity Mode Preset panel allows the user to set the mode request when a velocity control mode is requested. The default value for this parameter is 34586 (871A hex) indicating that bits 1, 3, 4, 8, 9, 10 and 15 are set. Note that bit 1 must always be set in this parameter, bits 0 and 6 must never be set and bit 7 has no meaning in velocity mode.

The user can set the following commands:

- Acceleration Limiting \rightarrow ON/OFF (bit 10)
- Command Micro Interpolation \rightarrow ON/OFF (bit 9)
- d,q Gain Calibration \rightarrow ON/OFF (bit 8)
- Field weakening \rightarrow ON/OFF (bit 5)
- Observer \rightarrow ON/OFF (bit 4)
- Generic Filter \rightarrow ON/OFF (bit 3)
- Velocity Mode \rightarrow ON/OFF (bit 1)

DS2100 User's Manual

B.3.16.28 Torque Mode Preset

The Torque Mode Preset panel allows the user to set the mode request when a torque control mode is requested. The default value for this parameter is 33041 (8111 hex) indicating that bits 0, 4, 8 and 15 are set. Note that bit 0 must always be set in this parameter, bits 1 and 6 must never be set and bits 3, 7 and 10 have no meaning in torque mode.

The user can set the following commands:

- d,q Gain Calibration \rightarrow ON/OFF (bit 8)
- Field weakening \rightarrow ON/OFF (bit 5)
- Observer \rightarrow ON/OFF (bit 4)
- Torque Mode \rightarrow ON/OFF (bit 0)

B.3.16.29 Feedback Sources

D52100 0.2 : 0		Feedback : 0	
Controller Front Panel		2 0 1 1	
Control with GUI	L		
Control with Step Function Generator	L		
Control with Sine Function Generator	L	Foodback Sources	
E CANopen	L	Feedback Sources	
E Drive Setup	L	Commutation Feedback	Resolver 🗸
📄 📄 Control Loop Configuration	L		
Position Mode Preset	L	Velocity Feedback	Resolver 🔻
Velocity Mode Preset	L		
Torque Mode Preset	L	Position Feedback	Resolver 💌
Feedback Sources			

The Feedback Sources panel allows the user to choose the feedback source used in the position and velocity loops between angle zero, resolver and encoder.

Angle zero implies that no commutation feedback source is selected. Moog Application or Design Engineering ONLY uses this parameter. Customers have to select encoder or resolver feedback to turn a motor.

- Commutation Feedback → Angle Zero/Resolver/Encoder
- Velocity Feedback → Angle Zero/Resolver/Encoder
- Position Feedback \rightarrow Angle Zero/Resolver/Encoder

D52100 0.2 : 0		Limiting Request : 0	
Controller Front Panel	П		
Control with GUI	11		
Control with Step Function Generator			
Control with Sine Function Generator			
🔁 💼 CANopen		Limiting Request bit	description
🖻 💼 Drive Setup			
🕀 💼 Control Loop Configuration		Thermal Limiting: Bridge	ON 🔻
🚍 💼 Active Limiting			
Limiting Configuration		Thermal Limiting: Motor	
I2T Limiting		Thermal Limiting: Ombient	
Thermal Limiting		mermar Limiting, Ambient	
Manual Mode Limiting		Manual Mode Limiting	OFF 🔍
 Limiting Status 		-	
🕀 💼 Compensators		I2T Limiting	ON 💌

The Limiting Configuration panel allows the user to set the limits using the following commands:

- Thermal Limiting Bridge \rightarrow Thermal limit of the power amplifier bridge (ON/OFF).
- Thermal Limiting Motor \rightarrow Thermal winding limit of the motor (ON/OFF).
- Thermal Limiting Ambient \rightarrow Thermal limit of the control electronics ambient (ON/OFF).
- Manual Mode Limiting \rightarrow Enables the manual mode limiting (ON/OFF).
- I2T Limiting \rightarrow Enables the I2T limiting (ON/OFF).

B.3.16.31 I2T Limiting

The I2T Limiting panel allows the user to set the I2T Limiting parameters.

D52100 0.2 : 0	I2T Limiting : 0	
Controller Front Panel		
Control with GUI		
Control with Step Function Generator		
Control with Sine Function Generator		
E CANopen	I2T Limitir	ng Parameters
🚊 💼 Drive Setup		
🕀 💼 Control Loop Configuration	Window Size (s)	25.000
🖻 💼 Active Limiting		
Limiting Configuration	Damping Factor	4
I2T Limiting		

- Window Size (s) \rightarrow averaging window for I2T limiting
- Damping Factor \rightarrow I2T output smoothing

B.3.16.32 Thermal Limiting

The Thermal Limiting panel allows the user to set the motor, bridge and ambient thermal limiting parameters .

ĺ	Thermal Limiting : 0			
	? <mark> </mark>			
		The sum of the st	in a Damana harr	
		i nermai Limit	ing Parameters	
	End Motor temp. (C)	155.0	End Bridge temp. (C)	125.0
	Max. Motor temp. (C)	155.0	Max. Bridge temp. (C)	100.0
	Start Motor temp. (C)	145.0	Start Bridge temp. (C)	98.0
	Span Motor temp. (C)	10.0	Span Bridge temp. (C)	27.0
	Motor Thermal Limit Factor	1.0	Bridge Thermal Limit Factor	1.0
	End Ambient temp. (C)	145.0	Start Bridge temp. STALL (C)	58.0
	Max. Ambient temp. (C)	85.0	Span Bridge temp. STALL (C)	67.0
	Start Ambient temp. (C)	125.0		
	Span Ambient temp. (C)	20.0	Start Bridge temp. RUN (C)	98.0
	Ambient Thermal Limit Factor	1.0	Span Bridge temp. RUN (C)	27.0

For the motor the parameters are:

- End Motor temp. → read only value, calculated from start + span. At this temperature the current is reduced to 0.
- Max. Motor temp. \rightarrow the temperature at which an over-temperature fault is indicated
- Start Motor temp. \rightarrow the temperature at which thermal limiting starts to act
- Span Motor temp. \rightarrow the temperature range over which the current is reduced to 0.
- Motor Thermal Limit Factor \rightarrow the actual value of the thermal limit factor (a value between 0 and 1.0)

The motor's temperature is measurable approximately between 25°C and 175°C. The software calculates the motor thermal limit based upon the motor windings temperature. The motor protection scheme is intended to ensure that the temperature of the motor core will not exceed 155°C.

For the ambient the parameters are:

- End Ambient temp. \rightarrow read only value, calculated from start + span. At this temperature the current is reduced to 0.
- Max. Ambient temp. \rightarrow the temperature at which an over-temperature fault is indicated
- Start Ambient temp. \rightarrow the temperature at which thermal limiting starts to act
- Span Ambient temp. \rightarrow the temperature range over which the current is reduced to 0.
- Ambient Thermal Limit Factor → the actual value of the thermal limit factor (a value between 0 and 1.0)

For the bridge the parameters are:

- End Bridge temp. \rightarrow read only value, calculated from start + span. At this temperature the current is reduced to 0.
- Max. Bridge temp. \rightarrow the temperature at which an over-temperature fault is indicated
- Start Bridge temp. \rightarrow read only value, which takes the value of 'Start Bridge temp. STALL' if the motor speed is less than 50RPM and otherwise takes the value of Start Bridge temp. RUN
- Span Bridge temp. \rightarrow read only value, which takes the value of 'Span Bridge temp. STALL' if the motor speed is less than 50RPM and otherwise takes the value of Span Bridge temp. RUN
- Bridge Thermal Limit Factor \rightarrow the actual value of the thermal limit factor (a value between 0 and 1.0)
- Start Bridge temp. STALL \rightarrow the temperature at which thermal limiting starts to act for motor speed of \leq 50RPM
- Span Bridge temp. STALL → the temperature range over which the current is reduced to 0 for motor speed of ≤50RPM.
- Start Bridge temp. RUN→ the temperature at which thermal limiting starts to act for motor speed of >50RPM
- Span Bridge temp. RUN → the temperature range over which the current is reduced to 0 for motor speed of >50RPM

B.3.16.33 Manual Mode Limiting

The Manual Mode Limiting panel allows the user to set the parameters of this mode.

• Current/Velocity Limit as % of Max. (%) → it allows the user to set the current/velocity limit as a percent of the max value.

B.3.16.34 Limiting Status

The Limiting Status panel allows the user to see whether any limiting is active

D52100 0.2 : 0	Limiting Status : 0	
DS2100 0.2 : 0 Software ID Controller Access Level Controller Front Panel Control with GUI Control with Step Function Generator Control with Sine Function Generator Control with Sine Function Generator Control with Sine Function Generator Control Loop Configuration Control Loop Configuration Control Loop Configuration Control Limiting Control L	Limiting Status : 0	Iption OFF OFF

- Thermal Limiting \rightarrow (ON/OFF)
- Manual Mode Limiting \rightarrow (ON/OFF)
- I2T Limiting \rightarrow (ON/OFF)

B.3.16.35 Current Loop

The Current Loop panel allows the user to set/read the current loop compensator configuration and to monitor some internal loop variables.

The current control consists of a pair of compensators, one for the q-axis current control and the other for d-axis current control. The feedback currents 'current_q-axis_observer' and 'current_d-axis_observer' are output from the predictive current state observers.

CONFIGURATION:

- d-axis p-gain (Kp) \rightarrow The p-gain of the d-axis compensator (Volts/Amp).
- d-axis i-gain (Ki) \rightarrow The i-gain of the d-axis compensator (Volts/Amp/Tsamp).
- q-axis p-gain (Kp) \rightarrow The p-gain of the q-axis compensator (Volts/Amp).
- q-axis i-gain (Ki) \rightarrow The i-gain of the q-axis compensator (Volts/Amp/Tsamp).
- observer alpha comp. p-gain (Kp) → The p-gain of the observer alpha compensator (Volts/Amp).
- observer alpha comp. i-gain (Ki) → The i-gain of the observer alpha compensator (Volts/Amp/Tsamp).
- observer beta comp. p-gain (Kp) \rightarrow The p-gain of the observer beta compensator (Volts/Amp).
- observer beta comp. i-gain (Ki) → v i-gain of the observer beta compensator (Volts/Amp/Tsamp).
- current loop gain foldback breakpoint (A) → the current at which the current loop gain foldback starts
- current loop gain foldback minimum → the minimum value for the current loop gain foldback expressed as a fraction.
- Motor velocity loop rate divider → The rate divider for the motor velocity calculation the number of current loop samples per motor velocity sample

- iq demand (pre thermal limiting) (A) → The requested current on q-axis (before thermal limits setting).
- iq demand (post thermal limiting) (A) → The requested current on q-axis (after thermal limits setting).
- iq (observer predicted) $(A) \rightarrow$ The value of the q-axis current predicted by the observer.
- iq feedback (actual current) $(A) \rightarrow$ The actual real value of the q-axis current.
- id (observer predicted) $(A) \rightarrow$ The value of the d-axis current predicted by the observer.
- d-axis comp. error (A) → The difference between actual value and demanded value of the d-axis current.
- q-axis comp. error (A) → The difference between actual value and demanded value of the q-axis current.

B.3.16.36 Velocity Loop Compensators

The Velocity Loop Compensators panel allows the user to set the velocity loop compensator configuration and to see the feedback values.

D52100 0.2 : 0	Velocity Loop Compensators : 0			
Software ID Controller Access Level Controller Front Panel] ? <mark> </mark>			
Control with GUI				
Control with Step Function Generator	Velocity Loop Compensator Tuning			
Control with Sine Function Generator CANopen	Configural	tion	Feedback	
Trive Setup Dontrol Loop Configuration	extd vel comp. p-gain (Kp)	0.05	velocity command (rad/s)	0
Active Limiting Compensators	extd vel comp. i-gain (Ki)	2.0	velocity command (previous) (rad/s)	0
Current Loop	extd vel comp. ie-gain	0.0	actual velocity (filtered) (rad/s)	-739
Velocity Loop Compensators Position PI Loop Compensators				
Position TO Loop Compensators DC Bus Monitoring	velocity loop rate divider	1	extd vel. comp. error	-2199.9402
Filters Command Direction			torque cmd (vel comp o/p) (A)	-22,0
⊡ Limits			torque cmd (gen filter o/p) (A)	-22.0

In velocity mode, the velocity compensator is an I-PI configuration.

The output of this compensator is limited \pm Imax, and these limits can be read using the upper and lower limit parameters of the compensator.

CONFIGURATION

- extd vel comp. p-gain (Kp) \rightarrow The p-gain of the velocity compensator (Nm/rad/s).
- extd vel comp. i-gain (Ki) \rightarrow The i-gain of the velocity compensator (Nm/rad).
- extd vel comp. ie-gain \rightarrow The ie-gain of the velocity compensator.
- velocity loop rate divider → The rate divider for the velocity loop the number of current loop samples per velocity loop sample.

- velocity command \rightarrow velocity command prior to acceleration limiting
- velocity command (previous) \rightarrow velocity command after acceleration limiting
- actual velocity (filtered) (rad/s) \rightarrow low pass filtered velocity
- extd vel. comp. error \rightarrow difference between actual velocity and demanded velocity
- torque cmd (vel comp o/p) (A) \rightarrow the output from the velocity compensator
- torque cmd (gen filter o/p) (A) \rightarrow the output from the velocity compensator after passing through the generic filter block

B.3.16.37 Position PI Loop Compensators

The Position PI Loop Compensators panel allows the user to set the configuration of the PI loop gains and to see the feedback values.

The output of the compensator is limited to motvellimine, a term derived from the motor_max_velocity parameter. The compensator also implements anti-windup for the compensator's integrator.

CONFIGURATION

- PI comp. p-gain (Kp) \rightarrow The p-gain of the PI compensator (1/s).
- PI comp. i-gain (Ki) \rightarrow The i-gain of the PI compensator (1/s^2).
- Vel. Pi comp. p-gain (Kp) → The p-gain of the velocity loop PI compensator used in position mode (Nm/rad/s). This is separate to the velocity loop compensator used in velocity mode.
- Vel. Pi comp. i-gain (Ki) → The i-gain of the velocity loop PI compensator used in position mode (Nm/rad). This is separate to the velocity loop compensator used in velocity mode.
- position loop rate divider → The rate divider of the position loop mode the number of current loop samples per position loop sample.

- demand → The requested value of the position (note that the units for this parameter will only be correct (rad) when the drive is position mode)
- position (rad) \rightarrow The actual value of the position
- PI comp. error \rightarrow The difference between position and demand.
- velocity command → velocity command prior to acceleration limiting (the output from the PI compensator)
- velocity command (previous) \rightarrow velocity command after acceleration limiting
- actual velocity (filtered) (rad/s) \rightarrow low pass filtered velocity
- extd vel. comp. error \rightarrow difference between actual velocity and demanded velocity
- torque cmd (vel comp o/p) (A) \rightarrow the output from the velocity compensator
- torque cmd (gen filter o/p) (A) → the output from the velocity compensator after passing through the generic filter block

B.3.16.38 Position TO Loop Compensators

The Position TO Loop Compensators panel allows the user to set the configuration of the TO loop gains and to see the feedback values.

The time-optimal compensator is a non linear compensator that uses a square root function of the position error, to give optimal deceleration performance.

CONFIGURATION

- Ka-gain $(rad/s^2) \rightarrow$ The a-gain of the TO compensator (rad/s^2) .
- Kp-gain (Ki) \rightarrow The p-gain of the TO compensator (1/s).
- K i-gain (Kp) \rightarrow The i-gain of the TO compensator (1/s^2).
- Vel. Pi comp. p-gain (Kp) → The p-gain of the velocity loop PI compensator used in position mode (Nm/rad/s). This is separate to the velocity loop compensator used in velocity mode.
- Vel. Pi comp. i-gain (Ki) → The i-gain of the velocity loop PI compensator used in position mode (Nm/rad). This is separate to the velocity loop compensator used in velocity mode.
- position loop rate divider → The rate divider of the position loop mode the number of current loop samples per position loop sample.

- demand \rightarrow The requested value of the position.
- position (rad) \rightarrow The actual value of the position
- time opt. comp. error \rightarrow The difference between position and demand.
- velocity command → velocity command prior to acceleration limiting (the output from the PI compensator)
- velocity command (previous) \rightarrow velocity command after acceleration limiting
- actual velocity (filtered) (rad/s) \rightarrow low pass filtered velocity
- extd vel. comp. error \rightarrow difference between actual velocity and demanded velocity
- torque cmd (vel comp o/p) (A) \rightarrow the output from the velocity compensator
- torque cmd (gen filter o/p) (A) → the output from the velocity compensator after passing through the generic filter block

B.3.16.39 Nominal Bus Voltage

The Nominal Bus Voltage panel allows the user see the nominal value of the DC bus voltage.

D52100 0.2 : 0	Nominal Voltage : 0	
DS2100 RS232 Interface Mode	? € ↓ ↑	
Software ID Controller Access Level	Naminal Provide Hole	
Controller Front Panel	Nominal Bus Voltag	ge
Control with GUI	Bus Voltage	Measured 💌
Control with Step Function Generator		
Control with Sine Function Generator		
E CANopen	Bus Voltage (nominal) (V)	600.0
Drive Setup		
Active Limiting	Bus Voltage (default) (V)	600.0
🖃 💼 DC Bus Monitoring		
Nominal		
Softstart		
Continuous Bus Voltage		

NOMINAL BUS VOLTAGE:

Bus Voltage (nominal) (V) \rightarrow The nominal value of the bus voltage. If measured bus voltage is selected then this value is measured once the bus voltage is stable, otherwise this is the default bus voltage

DS2100 User's Manual

B.3.16.40 SOFTSTART VOLTAGE PARAMETERS

The Softstart panel allows the user to enable/disable the softstart detection and to set the softstart parameters.

DS2100 0.2 : 0	Softstart : 0
Software ID	
Controller Access Level	
Controller Front Panel	
Control with GUI	Coffedere Units on Development
Control with Step Function Generator	Sortstart voltage Parameters
Control with Sine Function Generator	
🗄 💼 CANopen	
🚊 💼 Drive Setup	Softstart Detection Completed 0
🕀 💼 Control Loop Configuration	· · · · · · · · · · · · · · · · · · ·
🕀 💼 Active Limiting	
🕀 💼 Compensators	
🖃 💼 DC Bus Monitoring	
Nominal	
Softstart	
Continuous Bus Voltage	

Softstart is used to limit the inrush current to the d.c. bus capacitor bank on application of a.c. mains power.

Softstart will only occur if the DC bus voltage level is above the softstart lower limit.

SOFTSTART VOLTAGE PARAMETERS :

• Softstart Detection Completed \rightarrow Shows whether the softstart detection has been completed.

B.3.16.41 Continuous Bus Voltage

The Continuous Bus Voltage panel shows the bus voltage status and allows the voltage limits to be set.

D52100 0.2 : 0	Continuous Voltage : 0	
Software ID		
Controller Access Level		
Controller Front Panel		
Control with GUI		
Control with Step Function Generator	Continuous Bus Volt	age
Control with Sine Function Generator		
🗄 💼 CANopen	Detected Bus Voltage (V)	0.0
🖻 👘 💼 Drive Setup	Over Voltage Limit (V)	800.0
🗄 💼 Control Loop Configuration		000.0
🗄 💼 Active Limiting	Under Voltage Limit (V)	450.0
🗄 💼 Compensators		
🔁 💼 DC Bus Monitoring	Under Volt. Limit % of Vdc Nom. (%)	75.0
Nominal		
Softstart		
Continuous Bus Voltage		
🖬 👘 💼 Filters		

- Detected Bus Voltage $(V) \rightarrow$ The actual value of the bus voltage.
- Over Voltage Limit $(V) \rightarrow$ The bus voltage at which a bus over-voltage fault is indicated.
- Under Voltage Limit (V) → The bus voltage at which a bus over-voltage fault is indicated. This is read only, the value being set by the percentage parameter.
- Under Volt. Limit % of Vdc Nom. (%) → The percentage of the nominal voltage that will be used as the under voltage limit.

APPENDIX B: GUI

DS2100 User's Manual

MOOG

B.3.16.42 Generic Filters

The Generic Filters panel allows the user to set the 9 programmable parameters of the filter on the output of the velocity compensator.

D52100 0.2 : 0	Generic Filter Panel : 0		
Software ID Controller Access Level	Selected Filter	Velocity Loop - Generic	: Filter
Controller Front Panel	Filter Coefficient b0	1.0	
Control with Step Function Generator	Filter Coefficient b1	0.0	
E CANopen	Filter Coefficient b2	0.0	
Control Loop Configuration English Active Limiting	Filter Coefficient b3	0.0	
Compensators De Bus Monitoring	Filter Coefficient b4	0.0	
Generic Filter Panel	Filter Coefficient a1	0.0	
Command Direction	Filter Coefficient a2	0.0	
Emile Limits Egen Resistor	Filter Coefficient a3	0.0	
Digital I/O Motor Setup	Filter Coefficient a4	0.0	
Application Specific Setups	Filter Mode	1	
Parameter Utilities Parameter Database	Read	Write Calculator Update From Calculator	

It may be configured as hi-pass, low-pass, band-pass or band-stop, to allow for maximum flexibility. The filter is used in the velocity loop and the output of the velocity compensator becomes the input to the generic filter.

GENERIC FILTER PARAMETERS :

- Filter Coefficients → these can be set individually or else the filter coefficient calculator can be used to derive the coefficients for a requested filter response.
- Filter Mode → Allows the user to choose the filter mode between high/low pass and band pass/stop. This is used in the drive to reduce the amount of calculation performed when high/low pass is selected.

The 'Calculator' button starts the filter coefficient calculator

The 'Update from calculator' button will place the values calculated by the filter coefficient calculator into the filter coefficient boxes ready to write to the drive. They will not be written to the drive until explicitly requested.

B.3.16.43 Velocity Feedback Filters

The Velocity Feedback Filters panel allows the user to set the cut-off factor of this filter.

D52100 0.2 : 0	Velocity Feedback Filters : 0	
Software ID		
Controller Access Level		
Controller Front Panel		
Control with GUI		
Control with Step Function Generator	Velocity Feedback Filter Parameters	
Control with Sine Function Generator		
🗄 💼 CANopen	Load Velocity	
🛱 💼 Drive Setup	Cutoff (Hz) 2480,0000	
🗄 👘 💼 Control Loop Configuration		
🗄 👘 💼 Active Limiting	Motor Velocity	
🗄 👘 💼 Compensators		
🗄 💼 DC Bus Monitoring	Cutoff (Hz) 2480.0000	
🛱 👘 💼 Filters		
Generic Filter Panel		
Velocity Feedback Filters		
Command Direction		

This is a low-pass filter included on the motor feedback velocity. It's a simple Euler approximation filter characterised by two filter coefficients $(a_1 \text{ and } b_0)$.

VELOCITY FEEDBACK FILTER PARAMETERS :

• Cutoff → The cutoff frequency as a fraction of the velocity loop sample rate. Setting this factor to 0.5 sets the filter cut-off to half the velocity loop sample rate.

B.3.16.44 Command Direction

The Command Direction panel allows the user to set the command polarity.

D52100 0.2 : 0	Command Direction : 0	
Software ID		
Controller Access Level		
Controller Front Panel		
Control with GUI		
Control with Step Function Generator	Command Directio	on Parameters
Control with Sine Function Generator		
🗄 💼 CANopen	Command Polarity	Positive
🚊 💼 Drive Setup		
🕀 💼 Control Loop Configuration		
🕀 💼 Active Limiting		
🗄 💼 DC Bus Monitoring		
Command Direction		
E mits		

COMMAND DIRECTION PARAMETERS :

• Command Polarity → Allows the user to choose the command polarity to be either positive or negative.

B.3.16.45 Current Limits

The Current Limits panel allows the user to see and set the current limit parameters.

D52100 0.2 : 0		Current Limits : 0	
Software ID	11		
Controller Access Level			
 Controller Front Panel 			
Control with GUI			
Control with Step Function Generator		Current Limit Parameters	
 Control with Sine Function Generator 			
🗄 💼 CANopen		Max. Current (combined) (A)	22.0
🖻 👘 🧰 Drive Setup			
🕀 💼 Control Loop Configuration			
🕀 💼 Active Limiting		Nominal Sensed Current (A)	25.08
🗄 💼 Compensators			
🗄 💼 DC Bus Monitoring		Controller Max. Current (A)	22.0
🕀 💼 Filters			
 Command Direction 		Motor Max. Current (A)	24.0
🖹 👘 Limits		Max Torque Limit (Nm)	9000.0
Current Limits			2000.0

CURRENT LIMIT PARAMETERS :

- Max. Current (combined) (A) → This is the minimum of all of the maximum currents set for the application. This is the current used as the maximum current demand for the current loop.
- Nominal Sensed Current (A) → This is the maximum current that can be sensed by the drive this is set automatically at power up for the power stage being used.
- Controller Max. Current (A) → This is the maximum current (peak) available from the drive this is set automatically at power up for the power stage being used.
- Motor Max. Current (A) → The maximum current that can be used with the attached motor this is set automatically at power up for the motor being used.
- Max. Torque Limit (Nm) → This can be used to limit the maximum current to a lower value than that obtained from the minimum of the motor and drive maximum currents. If this is not necessary then this parameter should be set to a very high value so that it has no effect.

B.3.16.46 Velocity Limits

The Velocity Limits panel allows the user to set the velocity limit parameters.

VELOCITY LIMIT PARAMETERS:

• Maximum Velocity (rad/s) → Allows the user to set the maximum velocity value. This is the maximum velocity command and therefore defines the scaling of the internal velocity command.

B.3.16.47 Acceleration Limits

The Acceleration Limits panel allows the user to set the acceleration limit parameters.

D52100 0.2 : 0	Acceleration Limits : 0	
Software ID	?	
Controller Access Level		
Controller Front Panel		
Control with Step Function Generator	Acceleration Limit Param	ieters
Control with Sine Function Generator	Max Acceleration (rad/s^2)	1000000.0
	Haxi Accoloration (radys - 27	100000010
Emilia Drive Setup	Max. Deceleration (rad/s^2)	1000000.0
Compensators Do Due Maciliarian	Outstates Developeries (vertices)	1000000.0
	Quickscop Deceleration (rad/sr^2)	100000.0
Command Direction		
	Fault Mode Deceleration (rad/s^2)	1000000.0
Current Limits		

The acceleration limiting is performed on the velocity command and has units of rad/s^2 .

ACCELERATION LIMIT PARAMETERS :

- Max Acceleration \rightarrow The max acceleration value for the velocity loop input.
- Max Deceleration \rightarrow The max deceleration value.
- Quickstop Deceleration \rightarrow The maximum deceleration value in quickstop mode
- Fault Mode Deceleration \rightarrow The maximum deceleration value in fault mode
B.3.16.48 Regen Parameters

The Regen Parameters panel allows the user to see and set the regeneration parameters.

D52100 0.2 : 0	Regen:0	
Software ID		
Controller Access Level		
Controller Front Panel		
Control with GUI		
 Control with Step Function Generator 	Regeneration Pa	rameters
Control with Sine Function Generator		
🕂 💼 CANopen	Regen control mode	Duty cycle 🗾
📄 💼 Drive Setup		
🗄 💼 Control Loop Configuration		
🗄 💼 Active Limiting	Regen-On Voltage (V)	760.0
⊡ Compensators		
⊞ DC Bus Monitoring	Regen-Off Voltage (V)	750.0
⊞ Eilters	Dama Damar (UI)	
Command Direction	Regen Power (w)	0.0
	Max Regen Current (A)	13.5
Regen Parameters	Regen Power Capability (W)	99,999985
Internal Regen		,

The regeneration control is implemented to prevent the capacitor over voltage caused by the energy that returns back into the D.C. Bus during a rapid motor deceleration or an overhauling load. To prevent it, a shunt regulator circuit senses when the bus voltage exceeds the Regeneration cut-in voltage and switches a Regeneration resistor across the D.C. Bus, to dissipate the Regeneration energy.

REGENERATION PARAMETERS :

- Regen control mode \rightarrow Allows user to select between:
 - o No Regen
 - o Duty-cycle
 - Duty-cycle + fault
 - Power fault only
 - Power warning only
- Regen-On Voltage $(V) \rightarrow$ The regeneration transistor turn-on voltage.
- Regen-Off Voltage $(V) \rightarrow$ The regeneration transistor turn-off voltage.
- Regen Power (W) \rightarrow The average regeneration power (measured).
- Max. Regen Current $(A) \rightarrow$ The maximum regeneration current.
- Regen Power Capability $(W) \rightarrow$ The total regeneration power capability.

B.3.16.49 Internal Regen

The Internal Regen panel allows the user to see the internal regeneration resistor parameters.

D52100 0.2 : 0	Internal Regen : 0	
Software ID Controller Access Level Controller Front Panel	? <mark> </mark>	
Control with GUI Control with Step Function Generator Control with Step Function Generator	Internal Regeneration f	Resistor Parameters
Control with Sine Punction Generator CANopen	Resistance (Ohm)	120.0
⊡ Drive Setup ⊡ Control Loop Configuration	Power (W)	100.0
⊕	Continuous on-time (s)	0.002
DC Bus Monitoring Immigration filters	Initial on-time (s)	0.020
Command Direction		
Regen Resistor Regen Parameters		
Internal Regen External Regen		

The internal regeneration resistor is effectively connected in parallel with the external one (if connected) because the same transistor controls them.

INTERNAL REGENERATION RESISTOR PARAMETERS :

- Resistance (Ohm) \rightarrow The internal regeneration resistor value.
- Power $(W) \rightarrow$ The internal regeneration resistor power.
- Continuous/Initial on-time (s) → These values are calculated by the software to set the appropriate duty cycle for the regeneration transistor.

B.3.16.50 External Regen

The External Regen panel allows the user to see the external regeneration resistor parameters.

EXTERNAL REGENERATION RESISTOR PARAMETERS :

- Resistance (Ohm) \rightarrow The external regeneration resistor value.
- Power $(W) \rightarrow$ The external regeneration resistor power.
- Continuous/Initial on-time (s) → These values are calculated by the software to set the appropriate duty cycle for the regeneration transistor.

B.3.16.51 Digital Input Configuration

The Digital Input Configuration panel allows the user to set digital input parameters.

DS2100 0.2:0	Digital Input 0-3 : 0			
	2 C + 1			
RS232 Interface Mode	,			
- Software ID		Digital Input	Configuration	
Controller Access Level	HARDWARE ENABL	F	DIGITAL INPLIT 2	
Controller Front Panel				
Control with Step Function Generator	Configuration	No function a 💌	Configuration	No function a
Control with Sine Function Generator	Debounce Count	1	Debounce Count	1
CANopen	Invert	0	Invert	0
Onversetup Onversetup Ontrol Loop Configuration	invoit		invor	
Active Limiting	trigger mode	Edge	trigger mode	Edge
Compensators	DIGITAL INPUT 1		DIGITAL INPUT 3	
Ellers	Configuration	No function a	Configuration	No function a
Command Direction	Comguration		Comgaration	No rancion a •
E Limits	Debounce Count	1	Debounce Count	1
E Regen Resistor	Invert	0	Invert	0
Digital Input (0-3) Configuration	triager mode	Edao	trigger mode	Edge
Digital Input (4-7) Configuration	ungger mode		ungger mode	
DS2100 0.2:0	Digital Input 4-7:0			
DS2100				
Software ID		Digital Input	Configuration	
Controller Access Level				
Controller Front Panel	DIGITAL INFOT 4		DIGITAL INFOTO	
Control with Step Function Generator	Configuration	No function a 💌	Configuration	No function a 💌
Control with Sine Function Generator	Debounce Count	1	Debounce Count	1
E CANopen	luccout.		lassed.	
Drive Setup	inven		invert	
Active Limiting	trigger mode	Edge 💌	trigger mode	Edge 💌
E-Compensators	DIGITAL INPUT 5		DIGITAL INPUT 7	
DC Bus Monitoring				
Command Direction	Configuration	ivo function a 💌	Configuration	INO function a
🕀 💼 Limits	Debounce Count	1	Debounce Count	1
Regen Resistor	Invert	0	Invert	0
Digital I/O				
Digital Input (4-7) Configuration	trigger mode	Edge	trigger möde	Edge
Digital Output Configuration				

There are 8 digital inputs on the DS2100. The first digital input is hardwired to always be used for drive enable, the drive can be enabled when this input is high, and the drive is always disabled when the input is low. This digital input can additionally be configured with a function, but it retains its hardware enable function as well. The other 7 inputs are user-configurable.

DIGITAL INPUT CONFIGURATION :

Digital input 0 (the drive enable input) is not available for configuration on this panel

DIGITAL INPUT (1, 2, 3, 4, 5, 6, 7)

- Configuration \rightarrow Associate a function to the input. The implemented functions are:
- •
- Brake Apply/Release: this handler function releases the brake.
- Positive Limit Switch: this handler function is used to configure the input as a positive limit switch.
- Negative Limit Switch: this handler function is used to configure the input as a negative limit switch.
- Home Switch: : this handler function is used to configure the input as a homing switch.
- o Quickstop: this handler function is used to configure the input as a quickstop input.
- Auto/Manual: this handler function is used to select between automatic (where normal limits apply) and manual mode (reduced power mode).
- Controlled Disable: this handler function is the same as the quickstop handler listed above, but configured to always disable when quickstop is complete.
- Debounce Count \rightarrow Number of times the input must be seen to be set before functionally is executed. The sample rate for the digital inputs is 2ms.
- Invert \rightarrow Allows the logic of the digital input to be inverted (e.g. If by default manual mode is when input is high it can be inverted to occur when input is low).
- Trigger Mode → Select either edge triggering (the function is only performed when digital input changes state) or level triggering (the function is performed repetitively).

B.3.16.52 Digital Output Configuration

The Digital Output Configuration panel allows the user to set digital output parameters.

D52100 0.2 : 0	Digital Output Configuration : 0			
Software ID				
Controller Access Level				
Controller Front Panel				
Control with GUI				
 Control with Step Function Generator 		Digital Outpu	t Configuration	
Control with Sine Function Generator				
🗄 💼 CANopen	DIGITAL	OUIPUI 1	DIG	STAL OUTPUT 3
🗐 💼 Drive Setup	Parameter	drysts	Parameter	
🗄 💼 Control Loop Configuration			1 dramotor	
🕀 💼 Active Limiting	Bit Mask	0×80	Bit Mask	0×0
🗄 💼 Compensators				
🗄 💼 DC Bus Monitoring	Invert	False 💌	Invert	False 💌
🗄 💼 Filters				
 Command Direction 	DIGITAL	001P01 2		
🗄 🖷 🛄 Limits	Parameter	limact 💌		
🕀 💼 Regen Resistor				
🖻 💼 Digital I/O	Bit Mask	0×d		
 Digital Input (0-3) Configuration 				
 Digital Input (4-7) Configuration 	Invert	False 💌		
 Digital Output Configuration 				
🔲 🕀 💼 Motor Setup				

There are 3 digital outputs on the DS2100. All 3 outputs are user-configurable.

DIGITAL OUTPUT CONFIGURATION :

DIGITAL OUTPUT (1, 2, 3)

- Parameter Number → The specific parameter that is to be associated with the digital output. The field value of the parameter must be entered into the digital output field number parameter, to specify the parameter of interest.
 - Digital Output 1 defaults to drvsts
 - o Digital Output 2 defaults to limact
 - Digital Output 3 defaults to diginp
- Bit Mask → Specify bits used to determine state of digital output within the parameter. This mask is ANDED with the parameter specified by the field number to determinate the digital output state.
- Invert \rightarrow Invert the logic of the digital output.

B.3.16.53 Motor Parameters

The Motor Parameters panel allows the user to set/read the electrical parameters of the motor.

D52100 0.2 : 0	Motor : 0	
DS2100 RS232 Interface Mode	? C + 1	
Software ID Controller Access Level	Motor Parameters	
Controller Front Panel	d-axis inductance (H) 0.00492	
Control with Step Function Generator Control with Sine Function Generator	q-axis inductance (H) 0.00518	
	Terminal-Terminal resistance (Ohm) 2.4	
Motor Setup	Ke 1.16	
Motor Parameters Resolver Parameters	No. of Poles	
Commutation Parameters	Max. Continuous RMS Current (A)	
Moog Standard Motors: Full Database Moog Nonstandard Motors	Max. Motor Speed (rad/s) 999.96893	
Application Specific Setups Status and Faults		-1
Parameter Utilities	Resolver Poles 2	
Arailect Database Arailect Database Arailect Database	Commutation offset 5461	

A number of parameters are required when configuring a specific motor drive. For standard motors, these parameters are implemented in the GUI's database.

For non-standard motors, the user must enter these parameters. This can be done using this panel but it is preferable to set up the non-standard motor in the non-standard motor database so that it is available for future use.

MOTOR PARAMETERS

- d-axis inductance (H) \rightarrow The inductance value of d-axis.
- q-axis inductance (H) \rightarrow The inductance value of q-axis.
- Terminal-Terminal resistance (Ohm) \rightarrow The terminal-to-terminal resistance of the motor.
- Ke $(V/rad/s) \rightarrow$ The Ke factor of the motor.
- No. of Poles \rightarrow The number of motor poles. It can be set from 2 to 36.
- Max. Continuous RMS Current (A) \rightarrow The maximum continuous RMS current of the motor.
- Resolver Poles \rightarrow The number of resolver poles.
- Commutation offset \rightarrow The value of the commutation offset.

B.3.16.54 Resolver Parameters

The Resolver Parameters panel allows the user to set the parameters of this motor position feedback sensor.

D52100 0.2 : 0	Resolver : 0
DS2100	<u>?</u>
Controller Access Level Controller Front Panel	Resolver Parameters
Control with GUI	Resolver Poles 2
Control with Step Function Generator	Resolver transformer turns ratio 0.5
⊕ CANopen ⊕ Drive Setup	Resolver reference amplitude (V) 3.6061
Motor Setup	
Resolver Parameters	Resolver Position 41648128
Encoder Parameters Commutation Parameters	Resolver Commutation Position -32768
Moog Standard Motors: Full Database Moog Nonstandard Motors	

- Resolver Poles \rightarrow The number of resolver poles.
- Resolver Transformer Turns Ratio → A physical characteristic of the resolver, which determines the amplitude of the resolver reference.
- Resolver reference amplitude → This is the voltage output from the DS2100 to drive the resolver.
- Resolver position → The multi-turn position derived from the resolver input position and used as feedback in the position loop if resolver position is selected for the position loop feedback
- Resolver commutation position → The electrical angle of the resolver. Depending on the pole count of the resolver this value is proportional to the mechanical angle.

B.3.16.55 Encoder Parameters

The Encoder Parameters panel allows the user to set the parameters of this motor position feedback sensor.

D52100 0.2 : 0	Encoder : 0			
DS2100 RS232 Interface Mode] ? ♥ ↓ ↑			
Software ID Gentralize Access Level				
Controller Access Level Controller Front Papel		Encoder F	Parameters	
Control with GUI	Encoder Type	No Encoder 🔍 💌	Parameters for SSI Er	coder Only
Control with Step Function Generator	Encoder Supply Voltage	+5V 💌	Number Of Bits For SSI Interface	13
⊞ — — — — — — — — — — — — — — — — —	No. of Increments	1024	Data Encoding For SSI Interface	Gray Code 💌
Motor Setup	Encoder Direction	Clockwise 💌	Bit Mask For SSI Interface	4294967292
Resolver Parameters	Encoder Resolution	10		
Commutation Parameters	Encoder Offset (incs.)	0		
Moog Standard Motors: Full Database	Encoder Position	0		
	Encoder Commutation Position	D		
🔲 🕀 💼 Parameter Utilities				

ENCODER PARAMETERS :

- Encoder Type \rightarrow Select the encoder type from a list of various types:
 - o No Encoder
 - Digital Incremental
 - Analog Incremental
 - 0 0 0 SSI Interface
 - Stegmann Hiperface
 - Heidenhain EnDat
- Encoder Supply Voltage \rightarrow Choose the encoder supply voltage. There are 3 options: +5, +8, +12 Volts.
- No. of Increments \rightarrow For normal digital, analogue or SSI interface encoders, the parameter has to be set to the number of increments (optical lines) per mechanical revolution. In case of Hiperface or Endat encoder this parameter is obtained from the encoder.
- Encoder Direction \rightarrow Select the encoder's direction of rotation between Clockwise and Counter-• clockwise.
- Encoder Resolution \rightarrow Fix the bit position of the full encoder increments in the encoder position. It can be set from 2 to 31.
- Encoder Offset (incs.) \rightarrow This can be used to compensate for a mechanical misalignment between the encoder and the desired encoder position.
- Encoder Position \rightarrow The 32-bit encoder position.
- Encoder Commutation Position \rightarrow A 16-bit value that represents a full mechanical revolution independent of the encoder resolution setting.

Parameters for SSI Encoder Only

- Number Of Bits For SSI Interface \rightarrow The number of bits in the raw data stream (not the number • of encoder position bits). It can be set from 2 to 32.
- Data Encoding For SSI Interface \rightarrow Select either binary or Gray code encoding.
- Bit Mask For SSI Interface \rightarrow Used to mask off all the unused bits in the raw data stream. A one in the mask means that the bit contains position information`

B.3.16.56 Commutation Parameters

The Commutation Parameters panel allows the user to set the commutation parameters.

D52100 0.2 : 0	Commutation : 0	
D52100	? C + †	
Controller Access Level	Commutation Para	ameters
Control with GUI	Commutation Type	Resolver Fe 💌
Control with Step Function Generator	Commutation Offset	5461
œ œ	Torque Mode	Torque
Motor Setup	Commutation Offset Adjustment	Start
Resolver Parameters		
Encoder Parameters Commutation Parameters		
Moog Standard Motors: Full Database		

The commutation module allows the selection of various commutation methods for the motor phase currents. It is possible to use a resolver, an encoder or a fixed value for the rotor feedback position.

COMMUTATION PARAMETERS :

- Commutation Type \rightarrow Select the commutation type from:
 - Angle Zero: the feedback angle for the rotor position is fixed at zero. This can be used to determine the phase angle between the rotor and the resolver or encoder.
 - Resolver Feedback: the rotor angle is taken from the resolver commutation position. 16-bit full scale corresponds to one full mechanical revolution.
 - Encoder Feedback: the commutation is done from the encoder commutation angle. 16-bit scale corresponds to one full mechanical revolution.
- Commutation Offset \rightarrow The offset angle between the commutation feedback and the phase currents.
- Torque \rightarrow Selects Torque mode
- Commutation Offset Adjustment → Automatic adjustment of the commutation offset. The following steps have to be followed:

Commutation Adjustment Procedure

- Ensure that no faults or warnings are present on the drive.
- Ensure that rotor can turn freely.
- Ensure that the correct motor parameters have been configured.
- o Set commutation_feedback (resolver or encoder).
- Set the drive to torque mode.
- Set Comm. Off. Adj. To 1 to start the procedure.
- Enable the drive. The communication adjustment starts.
- Wait until reads 0 (after about 2 seconds).

B.3.16.57 Moog Standard Motors: Full Database

D52100 0.2 : 0	Moog Standard Motors: Full Database : 0		
D52100	Motor Details / Download Motor Create Entry Delete Entry Search Motor:		
Software ID	MotorName		
Controller Access Level	FAE-N-0-M3-030		
Controller Front Panel	FAE-N-0-M6-030		
Control with GUI	FAE-N-0-V3-030		
Control with Step Function Generator	FAE-N-0-V6-030		
Control with Sine Function Generator	FAE-N-1-M2-030		
庄 💼 CANopen	FAE-N-1-M4-030		
🕀 💼 Drive Setup	FAE-N-1-V2-030		
🚊 💼 Motor Setup	FAE-N-1-V4-030		
Motor Parameters	FAE-N-2-M2-030		
Resolver Parameters	FAE-N-2-M3-030		
Encoder Parameters	FAE-N-2-V2-030		
Commutation Parameters	FAE-N-2-V3-030		
Moog Standard Motors: Full Database	FAE-N-3-M1-030		
Moog Nonstandard Motors	FAE-N-3-M2-030		
Application Specific Setups	FAE-N-3-V1-030		
🗄 💼 Status and Faults	FAE-N-3-V2-030		
🗄 💼 Parameter Utilities	FAE-N-7-M2-030		
Parameter Database	FAE-N-7-M4-030		
Oscilloscope	FAE-N-7-V2-030		
Firmware Upgrade	FAE-N-7-V4-030		
Parameter Database Upload	FAS-F-1-020-030		
Demo Mode	FAS-F-1-020-060		
E	FAS-F-1-040-030		
Unit Selection	FAS-F-1-040-045		
Unit On Request	FAS-F-1-060-030	Ţ	
Eault History	JEAS-E-1-DAD-DAS	<u> </u>	

Select a motor by double-clicking on the appropriate motor name.

Use the scrollbars to view the database or enter the motor required in the search textbox.

Once a motor is selected the motor parameters are shown:

Motor	×	
Motor Name	G424-400	
No. of Motor Poles	12	
Imax [Arms]	15	
In (Arms)	3.1	
Max Speed [rpm]	8000	
Nominal Max Speed [rpm]	5500	
Ke [V/rad/s]	0.45	
Rtt [Ohm]	2.7	
Lq [mH]	3.6	
Ld [mH]	3.5	
d-axis current compensator p-gain (V/A)	17.5426	
d-axis current compensator i-gain (V/A/s)	24502.3129	
Save Parameters	Save Parameters As	
Download Parameters To Controller	Close	
PICalculator		

Use the scrollbars to view all the parameters. Select "Download Parameters to Controller..." to configure the drive with the motor parameters. All parameters (including motor name) can be changed and, using "Save Parameters As", and selecting the correct database can create a new Non-standard motor.

B.3.16.58 Moog Nonstandard Motors

D52100 0.2 : 0	Moog Nonstandard Motors : 0
DS2100	Motor Details / Download Motor Create Entry Delete Entry Search Motor:
Software ID	MotorName
Controller Access Level	Test Motor 2
Controller Front Panel	Test motor 1
Control with GUI	
Control with Step Function Generator	
Control with Sine Function Generator	
🕀 💼 CANopen	
🗄 💼 Drive Setup	
🖻 👘 🧰 Motor Setup	
Motor Parameters	
Resolver Parameters	
Encoder Parameters	
Commutation Parameters	
Moog Standard Motors: Full Database	
Moog Nonstandard Motors	
II III Application Specific Seture	

The 'Create Entry' button allows the user to create a new non-standard motor entry. It opens a panel providing tools for creation of the motor database parameters.

Select a motor by double-clicking on the appropriate motor name.

Alternatively, if a standard motor is similar to the motor required, then the standard motor parameters can be altered and saved as a Non-standard motor:

Select the similar motor e.g. a G424-400, and make the changes required e.g. a Heidenhain encoder feedback is required instead of resolver feedback.

Change the motor name to an easily recognisable name e.g. G424-400_Enc.

Change the appropriate parameters:

Motor		<
observer beta compensator pi gain	10:000	T
observer beta compensator i-gain (1/s)	493.872	
gain foldback cut-off point (A)	2000	
gain foldback minimum value (<1.0)	1	Commutation feedback
resolver reference amplitude (Vrms)	3.75	source changed to 2
commutation feedback source	•	(encoder feedback).
commutation offset (incs)	5461	
No. of resolver poles	2	
encoder type	+	Encoder type changed to
encoder supply		5 (Heidenhain encoder)
encoder no. of increments	F	
encoder SSI number of bits	F	
encoder SSI coding	F	Ensure encoder supply
Save Parameters	Save Parameters As	voltage is correct (+5V
Download Parameters To Controller	Close	in this case).
PICalculator		

Click "Save Parameters As..." and save the new motor to the DatabaseMotorParametersNonstandard.mot file.

f Select Motor Database File	X
Look in: 🗋 motors 💽 🖻 🛗 🖽	
DatabaseMotorParametersNonstandard DatabaseMotorParametersStandardL DatabaseMotorParametersStandard DatabaseMotorParametersStandardDther DatabaseMotorParametersStandardD DatabaseMotorParametersStandardDther DatabaseMotorParametersStandardFAE DatabaseMotorParametersStandardFAE DatabaseMotorParametersStandardFASF DatabaseMotorParametersStandardFASF DatabaseMotorParametersStandardFASF DatabaseMotorParametersStandardFASF DatabaseMotorParametersStandardFASF DatabaseMotorParametersStandardFASF DatabaseMotorParametersStandardFASF DatabaseMotorParametersStandardFASF DatabaseMotorParametersStandardFASF DatabaseMotorParametersStandardFASF My Documents DatabaseMotorParametersStandardFASF My Computer DatabaseMotorParametersStandardFASY My Computer DatabaseMotorParametersStandardFASY DatabaseMotorParametersStandardFASY DatabaseMotorParametersStandardFASY DatabaseMotorParametersStandardFASY DatabaseMotorParametersStandardFASY DatabaseMotorParametersStandardFASY DatabaseMotorParametersStandardFASY DatabaseMotorParametersStandardFASY DatabaseMotorParametersStandardFASY	
My Network File name: DatabaseMotorParametersNonstandard.mot Select Motor Database File	
Files of type: Motor Database Files (*.mot) Cancel	

On selecting the Moog Nonstandard Motors tab again, the new non-standard motor is included:

D52100 0.2 : 0	Moog Nonstandard Motors : 0
D52100	Motor Details / Download Motor Create Entry Delete Entry Search Motor:
Software ID	MotorName
Controller Access Level	G424-400_Enc
Controller Front Panel	Test Motor 2
Control with GUI	Test motor 1
Control with Step Function Generator	
Control with Sine Function Generator	
E-CANopen	
🕀 💼 Drive Setup	
🖻 👘 Motor Setup	
Motor Parameters	
Resolver Parameters	
Encoder Parameters	
Commutation Parameters	
Moog Standard Motors: Full Database	
Moog Nonstandard Motors	

B.3.16.59 Status

The Status panel allows the user to see the state of all status bytes.

DS2100 0.2 : 0	Status : 0				
D52100	? C + t				
Software ID					
Controller Access Level	General Status Feedback				
Controller Front Panel	General Status Byte	0xa0	Software Status Byte 2	0x0	
Control with GUI					
Control with Step Function Generator	Board Status Byte 1	0x0	Software Status Byte 3	0×0	
Control with Sine Function Generator	Poard Status Puto 2	0.0	Database Status Pute	0~0	
E Drive Setun	board Status Byte 2	Jovo	Database Status Byte	Jovo	
H- Motor Setup	Board Status Byte 3	0x0	CANOpen Status Byte	0×0	
🗄 🧰 Application Specific Setups	Devict to D to A			,	
🗄 👘 🔁 Status and Faults	board Status byte 4	UXU			
Status	Exception Status Byte 1	0x0	Drive Status Byte 1	0x20	
🕀 💼 Status Descriptions					
Diagnostic Information	Exception Status Byte 2	0x0	Drive Status Byte 2	0×0	
Clear Faults	Exception Status Byte 3	0×0	Drive Status Byte 3	0×0	
Voltages					
ETI's	Memory Status Byte 1	0x0	Drive Status Byte 4	0×0	
Parameter Utilities	Memory Status Byte 2	0~40	Drive Statuc Ryte 5	0×0	
Parameter Database	Monory Status Byte 2	0×10	Drive Status Byte S	Jovo .	
Oscilloscope	Power Status Byte 1	0x2			
Firmware Upgrade	Demos Chabas Data A	, 			
Parameter Database Upload	Power Status Byte 2	Juxu			
Demo Mode Gen Granutica Unica d/Davada d	Software Status Byte 1	0x0			
English Configuration Upload/Download					

Opening the status description panel for the appropriate status byte shows the definition of the status bits for each of the bytes.

B.3.16.60 General Status Byte

GENERAL STATUS BYTE :

- Shared Resources Status → Shows the shared resources state. Shared resources are those that would be common to all axes in a multi-axis drive.
- Type 1 Fault \rightarrow A type 1 fault is one which cannot be cleared except by resetting the drive.
- Controller Fault \rightarrow shows if a fault is present on the drive
- Controller Warning \rightarrow shows if a warning is present on the drive
- CANOpen SYNC timeout fault \rightarrow Indicates that the SYNC message is no longer being received.

B.3.16.61 Board Status Byte 1

DIGITAL BOARD STATUS BYTE 1 :

- FPGA Configuration Transmission \rightarrow Indicates if there is a fault in FPGA configuration transmission.
- DSP Programming \rightarrow Indicates there is a DSP programming fault.
- QSPI Loopback \rightarrow Indicates there is a QSPI loopback fault.
- Ambient over temperature \rightarrow Indicates that the ambient temperature is greater than the programmed limit.
- Ambient Thermal Foldback Warning → Indicates that the ambient temperature has reached 90% of the set temperature at which point thermal limiting begins.
- Ambient Thermal Warning \rightarrow Indicates that the ambient temperature has reached 90% of the set temperature at which a thermal fault occurs.

B.3.16.62 Board Status Byte 2

DIGITAL BOARD STATUS BYTE 2 :

- COM1 loopback \rightarrow The result of the loop back test performed during initialisation of the drive.
- COM1 initialisation \rightarrow The result of the COM port initialisation

B.3.16.63 Board Status Byte 3

D52100 0.2 : 0	Board Status 3 : 0		
Control with Sine Function Generator CANopen Drive Setup	? <mark>C ↓ ↑</mark>		
Motor Setup Application Specific Setups	Digital Board Status Byte 3		
E	COM2 loopback	ОК	
⊡ Status Descriptions General Status Byte	COM2 initialisation	ок	
Board Status Byte 1 Board Status Byte 2	QSPI Initialisation	ок	
Board Status Byte 3 Board Status Byte 4			

DIGITAL BOARD STATUS BYTE 3 :

- COM2 loopback \rightarrow The result of the loop back test performed during initialisation of the drive.
- COM2 initialisation \rightarrow The result of the COM port initialisation
- QSPI Initialisation \rightarrow The result of the QSPI initialisation

B.3.16.64 Board Status Byte 4

DIGITAL BOARD STATUS BYTE 4 :

• TPU Initialisation \rightarrow The result of the TPU initialisation.

B.3.16.65 Exception Status Byte 1

The processor exceptions indicate serious internal faults in the drive.

B.3.16.66 Exception Status Byte 2

The processor exceptions indicate serious internal faults in the drive.

B.3.16.67 Exception Status Byte 3

The processor exceptions indicate serious internal faults in the drive.

B.3.16.68 Memory Status Byte 1

MEMORY STATUS BYTE 1 :

- NVM Write \rightarrow Indicates a problem writing to the drive internal NVM
- Application NVM Checksum → Indicates that the checksum for the data in the drive internal parameter NVM is incorrect
- FPGA Test RAM \rightarrow Indicates that the FPGA test RAM contains an incorrect value

B.3.16.69 Memory Status Byte 2

MEMORY STATUS BYTE 2 :

- Power Save NVM Checksum → Indicates that the checksum for the data in the drive internal power save NVM is incorrect. This is for information only, it does not cause a fault condition on the drive.
- Error log NVM Checksum → Indicates that the checksum for the data in the drive internal error log NVM is incorrect. This is for information only, it does not cause a fault condition on the drive.

B.3.16.70 Power Status Byte 1

POWER STATUS BYTE 1 :

- Bus Over-Voltage \rightarrow Indicates that the bus over-voltage limit is exceeded.
- Bus Under-Voltage \rightarrow Indicates that the bus under-voltage limit is exceeded.
- Regen Initialisation \rightarrow Indicates a fault during regeneration initialisation.
- Regen Short-Circuit \rightarrow Indicates that there is a regeneration short circuit fault.
- Bus Voltage \rightarrow Indicates whether bus voltage is active.

B.3.16.71 Power Status Byte 2

POWER STATUS BYTE 2 :

- 3.3 V Supply \rightarrow Indicates whether the 3.3 V supply is OK.
- 24 V Supply \rightarrow Indicates whether the 24 V supply is OK.
- +15 V Supply \rightarrow Indicates whether the +15 V supply is OK.
- $-15 \text{ V Supply} \rightarrow \text{Indicates whether the } -15 \text{ V supply is OK}.$
- Power Down Interrupt \rightarrow Indicates whether the power goes down (low V_{DC}).
- Bus Voltage Unstable \rightarrow Indicates whether the bus voltage is unstable.
- Regen Max. On Time Exceeded \rightarrow Indicates whether the regeneration exceeds the max limit on time
- 2V Reference \rightarrow Indicates whether the 2V reference is OK.

B.3.16.72 Software Status Byte 1

SOFTWARE STATUS BYTE 1 :

- Programming Fault \rightarrow This is an internal software fault and should never occur
- Rate Task Initialisation \rightarrow Indicates that a fault occurred during the initialisation of the periodic tasks
- NVM Address Out of Range → Indicates that an attempt was made to access an address outside the range of valid NVM addresses
- Error Handler \rightarrow Indicates an error initialising the error handler

B.3.16.73 Software Status Byte 2

SOFTWARE STATUS BYTE 2 :

- Rate Task 1 Time Overrun → Indicates the rate task code has taken longer than allowed to execute
- Rate Task 2 Time Overrun→ Indicates the rate task code has taken longer than allowed to execute
- Rate Task 3 Time Overrun→ Indicates the rate task code has taken longer than allowed to execute
- Rate Task 4 Time Overrun→ Indicates the rate task code has taken longer than allowed to execute
- Background Task Not Running→ Indicates the background task has not been executed for at least 1s. This is for indication only and does not cause a drive fault.

B.3.16.74 Database Status Byte

PARAMETER DATABASE STATUS BYTE :

• Database NVM Fault → Indicates a fault accessing non-volatile data memory from the internal parameter database.

B.3.16.75 CANOpen Status Byte

CANOPEN STATUS BYTE :

• Bus Off → Indicates that the drive CAN controller is in the bus off state due to a fault on the system CAN bus.

B.3.16.76 Drive Status Byte 1

DRIVE STATUS BYTE 1 :

- Loss of Encoder Fault → Indicates that the encoder is disconnected, but has been selected as a feedback source.
- Short Circuit Top \rightarrow Indicates a short circuit fault
- Loss of Resolver Fault → Indicates that the resolver is disconnected, but has been selected as a feedback source.
- Bridge Over Temperature \rightarrow Indicates that the bridge temperature has exceeded the upper limit.
- Motor Over Temperature \rightarrow Indicates that the motor temperature has exceeded the upper limit.
- Short Circuit Bottom \rightarrow Indicates a short circuit fault
- Velocity Rampdown → Indicates a timeout fault during a velocity rampdown (quickstop).
- Manual Mode \rightarrow Indicates whether manual mode is enabled. This is a warning only.

B.3.16.77 Drive Status Byte 2

DRIVE STATUS BYTE 2 :

- Enable Attempted \rightarrow Indicates that an attempt was made to enable the drive when the conditions for enabling were not valid (e.g. hardware enable false).
- Encoder Supply \rightarrow Indicates an encoder supply fault.
- Motor Thermal Foldback Warning → Indicates that the temperature is within 10% of the start temperature for motor thermal foldback
- Dead-time Generation \rightarrow Indicates a fault in the PWM dead-time generation.
- Bridge Thermal Foldback Warning → Indicates that the temperature is within 10% of the start temperature for bridge thermal foldback

B.3.16.78 Drive Status Byte 3

DRIVE STATUS BYTE 3 :

- Drive OK→ Shows the drive resources state. Drive resources are those that would be exclusive to a single axis in a multi-axis drive.
- Position Error in Limits → Indicates that the actual position has attained the target position within a programmable range. Valid in position mode only.
- Thermal Limiting \rightarrow Indicates whether the thermal limiting is active.

B.3.16.79 Drive Status Byte 4

DRIVE STATUS BYTE 4 :

- DSP Phase A Current Offset → Indicates if the DSP phase A current offset is greater than a programmable limit.
- DSP Phase B Current Offset → Indicates if the DSP phase B current offset is greater than a programmable limit.
- DSP Encoder Sine Offset \rightarrow Indicates if the DSP encoder sine offset is greater than a programmable limit.
- DSP Encoder Cosine Offset → Indicates if the DSP encoder cosine offset is greater than a programmable limit.
- Motor Thermal Warning → indicates that the motor winding temperature is within 10% of the motor max temperature.
- Bridge Thermal Warning → Indicates that the power transistor heatsink temperature is within 10% of the bridge maximum temperature.
- Regen Warning → Indicates that the power dissipated in the regen resistor(s) is within 10% of the continuous capability of the resistor(s).
- Limit Switch hit Warning → Indicates that either clockwise or counter-clockwise limit switch has become active.

B.3.16.80 Drive Status Byte 5

DRIVE STATUS BYTE 5 :

- Resolver Sine Out Of Range \rightarrow the DSP A-D input is outside the valid range of 0V to 4V
- Phase A Current Out Of Range \rightarrow the DSP A-D input is outside the valid range of 0V to 4V
- Encoder Sine Out Of Range \rightarrow the DSP A-D input is outside the valid range of 0V to 4V
- Resolver Sine Out Of Range \rightarrow the DSP A-D input is outside the valid range of 0V to 4V
- Resolver Cos Out Of Range \rightarrow the DSP A-D input is outside the valid range of 0V to 4V
- Phase B Current Out Of Range \rightarrow the DSP A-D input is outside the valid range of 0V to 4V
- Encoder Cos Out Of Range \rightarrow the DSP A-D input is outside the valid range of 0V to 4V

B.3.16.81 Diagnostic Information

DIAGNOSTIC INFORMATION PARAMETERS :

- Digital Input Status → Shows the state of the digital inputs. This is a single byte where bit 0 (LSB) corresponds to the hardware enable digital input, bit 1 corresponds to digital input 1,...., bit 7 corresponds to digital input 7.
- Card ID \rightarrow It shows the ID value of the power stage.
- Drive Status \rightarrow Shows the state of selected drive status bits.
 - \circ Bit 7 (MSB) = enable state.
 - \circ Bit 3 = short circuit (top) fault.
 - \circ Bit 2 = short circuit (bottom) fault.
 - \circ Bit 1 = regeneration fault.
 - \circ Bit 0 (LSB) = PWM dead time generation fault
B.3.16.82 Clear Faults

The Clear Faults panel allows the user to attempt to clear all the faults.

It is possible to clear all faults except for those faults that occur during the initialisation process and faults due to microprocessor exceptions.

It is possible to determine whether one of these non-clearable faults has occurred by reading the type 1 fault bit in the status_controller parameter ('General Status' byte).

B.3.16.83 Temperatures

.

The Temperature panel allows the user to see the values of motor, bridge and ambient temperature.

D52100 0.2 : 0	Temperatures : 0	
DS2100	? <mark> </mark>	
Software ID Controller Access Level		
Controller Access Level	Temperature	Status
Control with GUI	Bridge Temperature (C)	33.93191
Control with Step Function Generator	Motor Temperature (C)	19.389666
En CANopen	Ambient Temperature (C)	26.204485
		,
⊕ — Application Specific Setups		
🗄 🖳 Status and Faults		
Status		
⊕ □ Status Descriptions		
Diagnostic Information		
Clear Faults		
Temperatures		
Voltages		

TEMPERATURE STATUS :

- Bridge Temperature (°C) \rightarrow The power amplifier bridge temperature.
- Motor Temperature (°C) \rightarrow The motor winding temperature.
- Ambient Temperature (°C) \rightarrow The control electronics ambient temperature.

B.3.16.84 Voltages

The Voltages panel displays the actual voltage.

VOLTAGE STATUS :

- DC Bus $(V) \rightarrow$ The actual value of the DC bus voltage.
- +3.3V Supply (V) \rightarrow The actual value of the +3.3V logic supply.
- +24V Supply (V) \rightarrow The actual value of the internal 24V logic supply.
- +15V Supply (V) \rightarrow The actual value of the +15V logic supply.
- -15V Supply (V) \rightarrow The actual value of the -15V logic supply.
- +2V Reference (V) \rightarrow The actual value of the 2V reference level.
- Encoder Supply $(V) \rightarrow$ The actual value of the encoder supply.

B.3.16.85 ETI's

D52100 0.2 : 0	ETI:0	
DS2100 RS232 Interface Mode Software ID	? <mark> </mark>	
Controller Access Level	Elapsed Time Indic	ators
Controller Front Panel	System-On Tim	e
Control with Step Function Generator	Time Since Last Power-on (s)	11499
CANopen Drive Setup	Total System-On Time (s)	2843467
Motor Setup	Total No. of Power downs	80
Status and Faults		
Status End Status Status Descriptions	Drive Enabled Ti	me
Diagnostic Information Clear Faults	Current Enabled Time (s)	0
Temperatures Veltages	Enabled Time since Power-on (s)	0
ETT's	Total Enabled Time (s)	1649
🗄 👘 💼 Parameter Utilities		

The ETI panel allows the user to see the Elapsed Time Indicators.

ELAPSED TIME INDICATORS :

System-On Time:

- Time Since Last Power-on (s) \rightarrow The elapsed time since power up.
- Total System-On Time (s) \rightarrow The total powered up time.
- Total No. of Power downs \rightarrow The number of power downs.

Drive Enabled Time:

- Current Enabled Time (s) \rightarrow The enabled time since enable.
- Enabled Time since Power-on $(s) \rightarrow$ The enabled time since power up.
- Total Enabled Time $(s) \rightarrow$ The total enabled time.

B.3.16.86 Drive Parameter Load/Save

The Drive Parameter Load/Save panel allows the user to load/save the drive configuration parameters implemented in the software.

PARAMETER LOAD/SAVE :

- Load Default Parameter Values → This allows the user to load the default values of each drive configuration parameter.
- Save all Parameters \rightarrow This allows the user to save drive configuration parameters to non-volatile memory.
- Load all Parameters → This allows the user to load drive configuration parameters which have been saved in the non-volatile memory.

B.3.16.87 Encoder Parameter Load/Save

The Encoder Parameter Load/Save panel allows the user to load/save the motor configuration parameters implemented in the software to the encoder EEPROM.

PARAMETER LOAD/SAVE :

- Load Default Parameter Values → This allows the user to load the default values of the motor configuration parameters to the drive.
- Save all Parameters → This allows the user to save drive configuration parameters to the encoder EEPROM.
- Load all Parameters → This allows the user to load motor configuration parameters which have been saved in the encoder EEPROM.

B.3.16.88 Parameter Database

This is the database of all parameters implemented in the software. Entry of parameters in to the database requires at minimum, application engineer access.

D52100 0.2 : 0	10.2 : 0 Parameter Database : 0				
- PC2100	Name	Number	Туре	Comment	
DS2100	ctlwrd	1000	UNSIGN16	state machine requested state	•
R5232 Interrace Mode	stawrd	1001	UNSIGN16	state machine actual state	
Gostwalley Access Level	temode	1002	UNSIGN8	terminal emulator mode	
Controller Access Level	brkbrgtimout	1004	FLOAT	brake lock to disable timeout	
Controller Front Panel	algctlbrkbrg	1005	UNSIGN16	brake and bridge handling	
Control with Gui	batmodact	1006	UNSIGN16	fault override mode	
Control with Step Function Generator	hdwenactl	1007	UNSIGN16	hardware enable control	
Control with Sine Function Generator	stacti	1008	UNSIGN16	controller state	
	ctlwrddr1	1009	UNSIGN16	drive requested state	
H Drive Setup	stawrddr1	1010	UNSIGN16	drive actual state	
	e	1011	UNSIGN8	enable shortcut	
Application Specific Setups	d	1012	UNSIGN8	disable shortcut	
Here Status and Faults	qstmod	1013	UNSIGN8	quickstop mode: bit 0=disable after quickstop, bit 1=stay enabled	
Parameter Utilities	brgbrktimout	1014	FLOAT	disable to brake lock timeout	
Parameter Database	restrr	1024	FLOAT	resolver transformer ratio	
Oscilloscope	famp	1025	SIGN32	function generator step amplitude	
Firmware Upgrade	fdut	1026	SIGN16	function generator step duty cycle	
Parameter Database Upload	fofs	1027	SIGN32	function generator step offset	
Demo Mode	fper	1028	SIGN32	function generator step period	
Configuration Upload/Download	sinamp	1029	FLOAT	function generator sine amplitude	
Unit Selection	sinofs	1030	FLOAT	function generator sine offset	
Unit On Request	sinfrq	1031	FLOAT	function generator sine frequency	
Fault History	sincmd	1032	SIGN32	function generator sine output	
Device Inro	cmd	1033	SIGN32	control loop command	
	demand	1034	SIGN32	internal loop demand	
	comfbk	1035	UNSIGN8	commutation feedback: 0-fixed, 1-resolver, 2-encoder	
	comofs	1036	SIGN16	commutation offset	
	respol	1037	UNSIGN16	resolver poles	Ţ.
		+	+	· · ·	_

It is possible to sort the database in various ways by right-clicking on the database and selecting the required sort method.

Alternatively, click on the Name, Number or Comment title to sort.

The 'sort by function' option will sort the displayed database in the same order as the master database, so the parameters are grouped together by functionality.

B.3.16.89 Oscilloscope

The DS2100 configuration of WinDrive contains the above **Oscilloscope Panel**. The oscilloscope is an internal storage oscilloscope with up to four input channels, trigger function, and time base. It can be used to store fast events or to store information that caused fault conditions. Up to four input channels can be used to sample any of the controller's internal parameters. The trigger controls the sampling of the data synchronised to a trigger input, which can be any of the controller's internal parameters. It is possible to have a delayed trigger or a pre-trigger. The slope can be rising, falling, or both.

The Oscilloscope Panel is divided into the following sections:

B.3.16.89.1 Display Area

This displays the traces, cursors, and trigger position. Traces are shown in their respective colours (i.e. green, red, pink, or blue). Cursors are shown in blue. The trigger position is shown in orange. At the bottom of the display area there is a horizontal scroll bar, which allows left and right scrolling when the number of samples taken exceeds that at which the trace can be fully displayed in the display with the current settings.

B.3.16.89.2 Timebase Panel

Time per division: Sets the time represented by each horizontal division in the display area. *Number of samples*: Sets the number of samples taken before the plot is wrapped around to the beginning. When this occurs, the existing plot is erased. This value can be set to a large number if longer continuous plots are required.

First Sample On Screen: This represents the horizontal offset of the display area with respect to the complete plot. Changing this value has the same effect as moving the timebase scrollbar.

B.3.16.89.3 Channel Panels

Status: Sets the channel to visible, hidden, or off. *Source*: Represents which parameter is logged. *Scaling*: Represents the vertical scaling for this channel. *Offset*: Represents the vertical offset for this channel.

B.3.16.89.4 Cursor Panel

Allows 2 cursors to measure on the vertical axis, horizontal axis or a combination of both. Also automatically displays the difference between the cursors in time and frequency.

B.3.16.89.5 Trigger Panel

- Status: Displays the current status of the oscilloscope. This can be one of the following:
 - Stopped: The oscilloscope is currently not logging any data.
 - Waiting: The oscilloscope is currently waiting for the trigger to fire.
 - o Sampling: The oscilloscope is currently sampling.
- Source: Represents the parameter which is used for triggering.
- *Level*: The value at which the trigger will fire.
- *Delay*: Allows setting of trigger delay or pre-trigger.
- Coupling: Coupling can be dc, ac, or bitmap masking.
- *Slope*: Determines whether to trigger on a rising or falling slope.
- *Mode*: Can be set by the user. This can be one of the following:
 - Continuous: The oscilloscope will sample from firing of trigger continuously.
 - o Single: The oscilloscope will sample from firing of trigger for number of samples.
 - Roll: The oscilloscope will sample continuously (ignoring trigger settings).
 - o Stop: The oscilloscope will stop sampling.

B.3.16.90 Firmware Upgrade

D52100 0.2 : 0	Firmware Upgrade : 0
DS2100 0.2 : 0 DS2100 RS232 Interface Mode Software ID Controller Front Panel Controller Front Panel Control with GuI Control with Step Function Generator Control with Sine Function Generator CANopen CANopen Drive Setup Hotor Setup	Firmware Upgrade : 0 Code File Download Progress Download Status Charter Str
Application Specific Setups Define Setups Define Setups	System Command View Program Information Block
Parameter Utilities Parameter Database Oscilloscope Firmware Upgrade	

The firmware upgrade panel provides access to functions that reside in the bootloader for the drive software. Therefore, all of these functions will cause the drive to shut down and reset.

The 'choose file' and 'download file' buttons are used to change the application firmware in the drive. The 'system command' button provides some NVM erase functions and a system reset.

System Command	×
Erase All Customer Parameter NVM	
Erase All Parameter NVM	
Erase Error Log NVM	
Erase Elapsed Time NVM	
Erase Diagnostic NVM	
Erase All NVM	
System Reset	
Close	

The view program information block allows the user to view information that was recorded in flash memory when the application firmware was last programmed.

Program Information Block	X
Version PIB	1
Program Length	395776
Program Checksum	8581d2fa
No Write Cycles Flash	3
Date Of Last Programming	Century=20 Year=6 Month=7 Day=28
Time Of Last Programming	Hours=11 Minutes=14 Seconds=12
Software Version Firmware	out Wed Jun 28 18:18:55 2006
Name Of Operator Last Programming	EDALY
PIB CRC	2a0
	Close

The parameter database used in the GUI is synchronised with the embedded version by uploading the database information from the drive. This upload function allows the user to ensure that the database held by the GUI is consistent with the database in the drive.

B.3.16.92 Demo Mode

Switches the GUI into demonstration mode - no communications with the drive are possible in this mode.

D52100 0.2 : 0	Demo Mode : 0
DS2100 RS232 Interface Mode Software ID Controller Access Level Controller Front Panel Control with GUI Control with Step Function Generator Control Stup Parameter Database Oscilloscope Firmware Upgrade Parameter Database Upload Pemo Mode	Switch To Demo Mode

B.3.16.93 Configuration Upload

This function allows the user to upload the values for all of the configuration parameters so that the configuration can be re-used without having to repeat a long set-up procedure.

Once the location for the configuration file and filename are selected, click Save.

Ensure enough time is allowed for the full configuration upload to occur. Once upload is complete the following message appears:

B.3.16.94 Configuration Download

This function allows the user to download a configuration that has previously been uploaded with the configuration upload function.

Note: For safety reasons the drive must be disabled when downloading a new configuration file and a warning message will appear explaining this.

If the drive is enabled it will automatically be disabled if you select Yes.

🦸 Load Configu	uration File	×
Save in	n: 🗠 My Documents 💽 🗈 📸 🖽	
Recent Desktop My Documents My Computer	 My Music My Pictures PDF files Security 	
My Network	File name: Save	
	Files of type: CFG Files (*.cfg) Cancel	ן ב

Browse to the location where the appropriate configuration file is stored, select it and press Save.

Allow enough time for the download to occur (can be viewed in the Even Logger) and a confirmation message appears

B.3.16.95 Unit Selection

This panel allows the user to select the units to be used for each physical attribute.

н

B.3.16.96 Fault History

Moog WinDrive 3.02 - DS2100 Conliguration Navigator Driver View Help					-1012
- .	- 23		Status	Read Successful (Controller ACK)	
DS2100 0 PS232 Interface Mode Software D Controller Access Level Controller Access Level Control with Ster Function Generator Control with Ster Function Control with Ster Function Control with Ster Finaneter Utilities Parameter Outblace Oscilloscope Finaneter Database Upload Parameter Database Upload Configuration Upload/Download Configuration Upload/Download Fault History	Foult History : 0 Bytes Used Since Contro Event Log Current Poster Event Log Read Poster No of records to display	oler Reset on Sort By ^^	Status C Taxe	24 690 674 5	
	Tine	Temperature	Status	Action	

This panel allows the user to examine the internal event log of the drive.

Event Log Current Position – the next byte position that will be written in the event log.

Event Log Read Position – the first byte position that will be read from the event log when the refresh button is selected. This number will be automatically re-adjusted to the start of a record. After a refresh has completed, this number will be set to the end of the block of bytes that have been read

No of records to display – this is the number of event log records that will be read when the refresh button is selected. Each event log record has a length of 12 bytes.

In the event log display the columns are defined as follows:

Time – this is the time recorded from the drive total elapsed time indicator when the event occurred. The time is in seconds and is the total amount of time for which the drive has been powered up until the event occurred. Temperature – the temperature at which the event occurred

Status – a description of the event logged

Action - whether the event was set or cleared

B.3.16.97 Device Information

This panel displays useful information:

Device Name – Moog DS2100 CANopen Servodrive Hardware version – contains the revision of the CAN digital control card Software version – contains the name of the embedded firmware on the drive.

PAGE INTENTIONALLY BLANK